aboutsummaryrefslogtreecommitdiff
path: root/openssl-freefilesync/openssl-1.1.1-evp-kdf.patch
diff options
context:
space:
mode:
Diffstat (limited to 'openssl-freefilesync/openssl-1.1.1-evp-kdf.patch')
-rw-r--r--openssl-freefilesync/openssl-1.1.1-evp-kdf.patch5262
1 files changed, 5262 insertions, 0 deletions
diff --git a/openssl-freefilesync/openssl-1.1.1-evp-kdf.patch b/openssl-freefilesync/openssl-1.1.1-evp-kdf.patch
new file mode 100644
index 0000000..6a73a61
--- /dev/null
+++ b/openssl-freefilesync/openssl-1.1.1-evp-kdf.patch
@@ -0,0 +1,5262 @@
+diff -up openssl-1.1.1b/crypto/err/openssl.txt.evp-kdf openssl-1.1.1b/crypto/err/openssl.txt
+--- openssl-1.1.1b/crypto/err/openssl.txt.evp-kdf 2019-02-26 15:15:30.000000000 +0100
++++ openssl-1.1.1b/crypto/err/openssl.txt 2019-02-28 13:05:05.651521474 +0100
+@@ -743,6 +743,9 @@ EVP_F_EVP_DIGESTINIT_EX:128:EVP_DigestIn
+ EVP_F_EVP_ENCRYPTDECRYPTUPDATE:219:evp_EncryptDecryptUpdate
+ EVP_F_EVP_ENCRYPTFINAL_EX:127:EVP_EncryptFinal_ex
+ EVP_F_EVP_ENCRYPTUPDATE:167:EVP_EncryptUpdate
++EVP_F_EVP_KDF_CTRL:224:EVP_KDF_ctrl
++EVP_F_EVP_KDF_CTRL_STR:225:EVP_KDF_ctrl_str
++EVP_F_EVP_KDF_CTX_NEW_ID:226:EVP_KDF_CTX_new_id
+ EVP_F_EVP_MD_CTX_COPY_EX:110:EVP_MD_CTX_copy_ex
+ EVP_F_EVP_MD_SIZE:162:EVP_MD_size
+ EVP_F_EVP_OPENINIT:102:EVP_OpenInit
+@@ -805,11 +808,30 @@ EVP_F_PKCS5_PBE_KEYIVGEN:117:PKCS5_PBE_k
+ EVP_F_PKCS5_V2_PBE_KEYIVGEN:118:PKCS5_v2_PBE_keyivgen
+ EVP_F_PKCS5_V2_PBKDF2_KEYIVGEN:164:PKCS5_v2_PBKDF2_keyivgen
+ EVP_F_PKCS5_V2_SCRYPT_KEYIVGEN:180:PKCS5_v2_scrypt_keyivgen
++EVP_F_PKEY_KDF_CTRL:227:pkey_kdf_ctrl
+ EVP_F_PKEY_SET_TYPE:158:pkey_set_type
+ EVP_F_RC2_MAGIC_TO_METH:109:rc2_magic_to_meth
+ EVP_F_RC5_CTRL:125:rc5_ctrl
+ EVP_F_S390X_AES_GCM_CTRL:201:s390x_aes_gcm_ctrl
++EVP_F_SCRYPT_ALG:228:scrypt_alg
+ EVP_F_UPDATE:173:update
++KDF_F_HKDF_EXTRACT:112:HKDF_Extract
++KDF_F_KDF_HKDF_DERIVE:113:kdf_hkdf_derive
++KDF_F_KDF_HKDF_NEW:114:kdf_hkdf_new
++KDF_F_KDF_HKDF_SIZE:115:kdf_hkdf_size
++KDF_F_KDF_MD2CTRL:116:kdf_md2ctrl
++KDF_F_KDF_PBKDF2_CTRL_STR:117:kdf_pbkdf2_ctrl_str
++KDF_F_KDF_PBKDF2_DERIVE:118:kdf_pbkdf2_derive
++KDF_F_KDF_PBKDF2_NEW:119:kdf_pbkdf2_new
++KDF_F_KDF_SCRYPT_CTRL_STR:120:kdf_scrypt_ctrl_str
++KDF_F_KDF_SCRYPT_CTRL_UINT32:121:kdf_scrypt_ctrl_uint32
++KDF_F_KDF_SCRYPT_CTRL_UINT64:122:kdf_scrypt_ctrl_uint64
++KDF_F_KDF_SCRYPT_DERIVE:123:kdf_scrypt_derive
++KDF_F_KDF_SCRYPT_NEW:124:kdf_scrypt_new
++KDF_F_KDF_TLS1_PRF_CTRL_STR:125:kdf_tls1_prf_ctrl_str
++KDF_F_KDF_TLS1_PRF_DERIVE:126:kdf_tls1_prf_derive
++KDF_F_KDF_TLS1_PRF_NEW:127:kdf_tls1_prf_new
++KDF_F_PBKDF2_SET_MEMBUF:128:pbkdf2_set_membuf
+ KDF_F_PKEY_HKDF_CTRL_STR:103:pkey_hkdf_ctrl_str
+ KDF_F_PKEY_HKDF_DERIVE:102:pkey_hkdf_derive
+ KDF_F_PKEY_HKDF_INIT:108:pkey_hkdf_init
+@@ -821,6 +843,7 @@ KDF_F_PKEY_SCRYPT_SET_MEMBUF:107:pkey_sc
+ KDF_F_PKEY_TLS1_PRF_CTRL_STR:100:pkey_tls1_prf_ctrl_str
+ KDF_F_PKEY_TLS1_PRF_DERIVE:101:pkey_tls1_prf_derive
+ KDF_F_PKEY_TLS1_PRF_INIT:110:pkey_tls1_prf_init
++KDF_F_SCRYPT_SET_MEMBUF:129:scrypt_set_membuf
+ KDF_F_TLS1_PRF_ALG:111:tls1_prf_alg
+ OBJ_F_OBJ_ADD_OBJECT:105:OBJ_add_object
+ OBJ_F_OBJ_ADD_SIGID:107:OBJ_add_sigid
+@@ -2264,6 +2287,7 @@ EVP_R_ONLY_ONESHOT_SUPPORTED:177:only on
+ EVP_R_OPERATION_NOT_SUPPORTED_FOR_THIS_KEYTYPE:150:\
+ operation not supported for this keytype
+ EVP_R_OPERATON_NOT_INITIALIZED:151:operaton not initialized
++EVP_R_PARAMETER_TOO_LARGE:187:parameter too large
+ EVP_R_PARTIALLY_OVERLAPPING:162:partially overlapping buffers
+ EVP_R_PBKDF2_ERROR:181:pbkdf2 error
+ EVP_R_PKEY_APPLICATION_ASN1_METHOD_ALREADY_REGISTERED:179:\
+@@ -2299,6 +2323,7 @@ KDF_R_MISSING_SEED:106:missing seed
+ KDF_R_UNKNOWN_PARAMETER_TYPE:103:unknown parameter type
+ KDF_R_VALUE_ERROR:108:value error
+ KDF_R_VALUE_MISSING:102:value missing
++KDF_R_WRONG_OUTPUT_BUFFER_SIZE:112:wrong output buffer size
+ OBJ_R_OID_EXISTS:102:oid exists
+ OBJ_R_UNKNOWN_NID:101:unknown nid
+ OCSP_R_CERTIFICATE_VERIFY_ERROR:101:certificate verify error
+diff -up openssl-1.1.1b/crypto/evp/build.info.evp-kdf openssl-1.1.1b/crypto/evp/build.info
+--- openssl-1.1.1b/crypto/evp/build.info.evp-kdf 2019-02-26 15:15:30.000000000 +0100
++++ openssl-1.1.1b/crypto/evp/build.info 2019-02-28 13:05:05.651521474 +0100
+@@ -9,7 +9,8 @@ SOURCE[../../libcrypto]=\
+ p_open.c p_seal.c p_sign.c p_verify.c p_lib.c p_enc.c p_dec.c \
+ bio_md.c bio_b64.c bio_enc.c evp_err.c e_null.c \
+ c_allc.c c_alld.c evp_lib.c bio_ok.c \
+- evp_pkey.c evp_pbe.c p5_crpt.c p5_crpt2.c pbe_scrypt.c \
++ evp_pkey.c kdf_lib.c evp_pbe.c p5_crpt.c p5_crpt2.c pbe_scrypt.c \
++ pkey_kdf.c \
+ e_old.c pmeth_lib.c pmeth_fn.c pmeth_gn.c m_sigver.c \
+ e_aes_cbc_hmac_sha1.c e_aes_cbc_hmac_sha256.c e_rc4_hmac_md5.c \
+ e_chacha20_poly1305.c cmeth_lib.c
+diff -up openssl-1.1.1b/crypto/evp/e_chacha20_poly1305.c.evp-kdf openssl-1.1.1b/crypto/evp/e_chacha20_poly1305.c
+--- openssl-1.1.1b/crypto/evp/e_chacha20_poly1305.c.evp-kdf 2019-02-26 15:15:30.000000000 +0100
++++ openssl-1.1.1b/crypto/evp/e_chacha20_poly1305.c 2019-02-28 13:05:05.651521474 +0100
+@@ -14,8 +14,8 @@
+
+ # include <openssl/evp.h>
+ # include <openssl/objects.h>
+-# include "evp_locl.h"
+ # include "internal/evp_int.h"
++# include "evp_locl.h"
+ # include "internal/chacha.h"
+
+ typedef struct {
+diff -up openssl-1.1.1b/crypto/evp/encode.c.evp-kdf openssl-1.1.1b/crypto/evp/encode.c
+--- openssl-1.1.1b/crypto/evp/encode.c.evp-kdf 2019-02-26 15:15:30.000000000 +0100
++++ openssl-1.1.1b/crypto/evp/encode.c 2019-02-28 13:05:05.651521474 +0100
+@@ -11,8 +11,8 @@
+ #include <limits.h>
+ #include "internal/cryptlib.h"
+ #include <openssl/evp.h>
+-#include "evp_locl.h"
+ #include "internal/evp_int.h"
++#include "evp_locl.h"
+
+ static unsigned char conv_ascii2bin(unsigned char a,
+ const unsigned char *table);
+diff -up openssl-1.1.1b/crypto/evp/evp_err.c.evp-kdf openssl-1.1.1b/crypto/evp/evp_err.c
+--- openssl-1.1.1b/crypto/evp/evp_err.c.evp-kdf 2019-02-28 13:05:05.617522103 +0100
++++ openssl-1.1.1b/crypto/evp/evp_err.c 2019-02-28 13:05:05.651521474 +0100
+@@ -1,6 +1,6 @@
+ /*
+ * Generated by util/mkerr.pl DO NOT EDIT
+- * Copyright 1995-2018 The OpenSSL Project Authors. All Rights Reserved.
++ * Copyright 1995-2019 The OpenSSL Project Authors. All Rights Reserved.
+ *
+ * Licensed under the OpenSSL license (the "License"). You may not use
+ * this file except in compliance with the License. You can obtain a copy
+@@ -56,6 +56,9 @@ static const ERR_STRING_DATA EVP_str_fun
+ {ERR_PACK(ERR_LIB_EVP, EVP_F_EVP_ENCRYPTFINAL_EX, 0),
+ "EVP_EncryptFinal_ex"},
+ {ERR_PACK(ERR_LIB_EVP, EVP_F_EVP_ENCRYPTUPDATE, 0), "EVP_EncryptUpdate"},
++ {ERR_PACK(ERR_LIB_EVP, EVP_F_EVP_KDF_CTRL, 0), "EVP_KDF_ctrl"},
++ {ERR_PACK(ERR_LIB_EVP, EVP_F_EVP_KDF_CTRL_STR, 0), "EVP_KDF_ctrl_str"},
++ {ERR_PACK(ERR_LIB_EVP, EVP_F_EVP_KDF_CTX_NEW_ID, 0), "EVP_KDF_CTX_new_id"},
+ {ERR_PACK(ERR_LIB_EVP, EVP_F_EVP_MD_CTX_COPY_EX, 0), "EVP_MD_CTX_copy_ex"},
+ {ERR_PACK(ERR_LIB_EVP, EVP_F_EVP_MD_SIZE, 0), "EVP_MD_size"},
+ {ERR_PACK(ERR_LIB_EVP, EVP_F_EVP_OPENINIT, 0), "EVP_OpenInit"},
+@@ -147,10 +150,12 @@ static const ERR_STRING_DATA EVP_str_fun
+ "PKCS5_v2_PBKDF2_keyivgen"},
+ {ERR_PACK(ERR_LIB_EVP, EVP_F_PKCS5_V2_SCRYPT_KEYIVGEN, 0),
+ "PKCS5_v2_scrypt_keyivgen"},
++ {ERR_PACK(ERR_LIB_EVP, EVP_F_PKEY_KDF_CTRL, 0), "pkey_kdf_ctrl"},
+ {ERR_PACK(ERR_LIB_EVP, EVP_F_PKEY_SET_TYPE, 0), "pkey_set_type"},
+ {ERR_PACK(ERR_LIB_EVP, EVP_F_RC2_MAGIC_TO_METH, 0), "rc2_magic_to_meth"},
+ {ERR_PACK(ERR_LIB_EVP, EVP_F_RC5_CTRL, 0), "rc5_ctrl"},
+ {ERR_PACK(ERR_LIB_EVP, EVP_F_S390X_AES_GCM_CTRL, 0), "s390x_aes_gcm_ctrl"},
++ {ERR_PACK(ERR_LIB_EVP, EVP_F_SCRYPT_ALG, 0), "scrypt_alg"},
+ {ERR_PACK(ERR_LIB_EVP, EVP_F_UPDATE, 0), "update"},
+ {0, NULL}
+ };
+@@ -233,6 +238,8 @@ static const ERR_STRING_DATA EVP_str_rea
+ "operation not supported for this keytype"},
+ {ERR_PACK(ERR_LIB_EVP, 0, EVP_R_OPERATON_NOT_INITIALIZED),
+ "operaton not initialized"},
++ {ERR_PACK(ERR_LIB_EVP, 0, EVP_R_PARAMETER_TOO_LARGE),
++ "parameter too large"},
+ {ERR_PACK(ERR_LIB_EVP, 0, EVP_R_PARTIALLY_OVERLAPPING),
+ "partially overlapping buffers"},
+ {ERR_PACK(ERR_LIB_EVP, 0, EVP_R_PBKDF2_ERROR), "pbkdf2 error"},
+diff -up openssl-1.1.1b/crypto/evp/evp_locl.h.evp-kdf openssl-1.1.1b/crypto/evp/evp_locl.h
+--- openssl-1.1.1b/crypto/evp/evp_locl.h.evp-kdf 2019-02-28 13:05:05.253528831 +0100
++++ openssl-1.1.1b/crypto/evp/evp_locl.h 2019-02-28 13:05:05.652521456 +0100
+@@ -41,6 +41,11 @@ struct evp_cipher_ctx_st {
+ unsigned char final[EVP_MAX_BLOCK_LENGTH]; /* possible final block */
+ } /* EVP_CIPHER_CTX */ ;
+
++struct evp_kdf_ctx_st {
++ const EVP_KDF_METHOD *kmeth;
++ EVP_KDF_IMPL *impl; /* Algorithm-specific data */
++} /* EVP_KDF_CTX */ ;
++
+ int PKCS5_v2_PBKDF2_keyivgen(EVP_CIPHER_CTX *ctx, const char *pass,
+ int passlen, ASN1_TYPE *param,
+ const EVP_CIPHER *c, const EVP_MD *md,
+diff -up openssl-1.1.1b/crypto/evp/evp_pbe.c.evp-kdf openssl-1.1.1b/crypto/evp/evp_pbe.c
+--- openssl-1.1.1b/crypto/evp/evp_pbe.c.evp-kdf 2019-02-26 15:15:30.000000000 +0100
++++ openssl-1.1.1b/crypto/evp/evp_pbe.c 2019-02-28 13:05:05.652521456 +0100
+@@ -12,6 +12,7 @@
+ #include <openssl/evp.h>
+ #include <openssl/pkcs12.h>
+ #include <openssl/x509.h>
++#include "internal/evp_int.h"
+ #include "evp_locl.h"
+
+ /* Password based encryption (PBE) functions */
+diff -up openssl-1.1.1b/crypto/evp/kdf_lib.c.evp-kdf openssl-1.1.1b/crypto/evp/kdf_lib.c
+--- openssl-1.1.1b/crypto/evp/kdf_lib.c.evp-kdf 2019-02-28 13:05:05.652521456 +0100
++++ openssl-1.1.1b/crypto/evp/kdf_lib.c 2019-02-28 13:05:05.652521456 +0100
+@@ -0,0 +1,165 @@
++/*
++ * Copyright 2018 The OpenSSL Project Authors. All Rights Reserved.
++ * Copyright (c) 2018, Oracle and/or its affiliates. All rights reserved.
++ *
++ * Licensed under the Apache License 2.0 (the "License"). You may not use
++ * this file except in compliance with the License. You can obtain a copy
++ * in the file LICENSE in the source distribution or at
++ * https://www.openssl.org/source/license.html
++ */
++
++#include <stdio.h>
++#include <stdlib.h>
++#include "internal/cryptlib.h"
++#include <openssl/engine.h>
++#include <openssl/evp.h>
++#include <openssl/x509v3.h>
++#include <openssl/kdf.h>
++#include "internal/asn1_int.h"
++#include "internal/evp_int.h"
++#include "internal/numbers.h"
++#include "evp_locl.h"
++
++typedef int sk_cmp_fn_type(const char *const *a, const char *const *b);
++
++/* This array needs to be in order of NIDs */
++static const EVP_KDF_METHOD *standard_methods[] = {
++ &pbkdf2_kdf_meth,
++#ifndef OPENSSL_NO_SCRYPT
++ &scrypt_kdf_meth,
++#endif
++ &tls1_prf_kdf_meth,
++ &hkdf_kdf_meth
++};
++
++DECLARE_OBJ_BSEARCH_CMP_FN(const EVP_KDF_METHOD *, const EVP_KDF_METHOD *,
++ kmeth);
++
++static int kmeth_cmp(const EVP_KDF_METHOD *const *a,
++ const EVP_KDF_METHOD *const *b)
++{
++ return ((*a)->type - (*b)->type);
++}
++
++IMPLEMENT_OBJ_BSEARCH_CMP_FN(const EVP_KDF_METHOD *, const EVP_KDF_METHOD *,
++ kmeth);
++
++static const EVP_KDF_METHOD *kdf_meth_find(int type)
++{
++ EVP_KDF_METHOD tmp;
++ const EVP_KDF_METHOD *t = &tmp, **ret;
++
++ tmp.type = type;
++ ret = OBJ_bsearch_kmeth(&t, standard_methods,
++ OSSL_NELEM(standard_methods));
++ if (ret == NULL || *ret == NULL)
++ return NULL;
++
++ return *ret;
++}
++
++EVP_KDF_CTX *EVP_KDF_CTX_new_id(int id)
++{
++ EVP_KDF_CTX *ret;
++ const EVP_KDF_METHOD *kmeth;
++
++ kmeth = kdf_meth_find(id);
++ if (kmeth == NULL) {
++ EVPerr(EVP_F_EVP_KDF_CTX_NEW_ID, EVP_R_UNSUPPORTED_ALGORITHM);
++ return NULL;
++ }
++
++ ret = OPENSSL_zalloc(sizeof(*ret));
++ if (ret == NULL) {
++ EVPerr(EVP_F_EVP_KDF_CTX_NEW_ID, ERR_R_MALLOC_FAILURE);
++ return NULL;
++ }
++
++ if (kmeth->new != NULL && (ret->impl = kmeth->new()) == NULL) {
++ EVP_KDF_CTX_free(ret);
++ return NULL;
++ }
++
++ ret->kmeth = kmeth;
++ return ret;
++}
++
++void EVP_KDF_CTX_free(EVP_KDF_CTX *ctx)
++{
++ if (ctx == NULL)
++ return;
++
++ ctx->kmeth->free(ctx->impl);
++ OPENSSL_free(ctx);
++}
++
++void EVP_KDF_reset(EVP_KDF_CTX *ctx)
++{
++ if (ctx == NULL)
++ return;
++
++ if (ctx->kmeth->reset != NULL)
++ ctx->kmeth->reset(ctx->impl);
++}
++
++int EVP_KDF_ctrl(EVP_KDF_CTX *ctx, int cmd, ...)
++{
++ int ret;
++ va_list args;
++
++ va_start(args, cmd);
++ ret = EVP_KDF_vctrl(ctx, cmd, args);
++ va_end(args);
++
++ if (ret == -2)
++ EVPerr(EVP_F_EVP_KDF_CTRL, EVP_R_COMMAND_NOT_SUPPORTED);
++
++ return ret;
++}
++
++int EVP_KDF_vctrl(EVP_KDF_CTX *ctx, int cmd, va_list args)
++{
++ if (ctx == NULL)
++ return 0;
++
++ return ctx->kmeth->ctrl(ctx->impl, cmd, args);
++}
++
++int EVP_KDF_ctrl_str(EVP_KDF_CTX *ctx, const char *type, const char *value)
++{
++ int ret;
++
++ if (ctx == NULL)
++ return 0;
++
++ if (ctx->kmeth->ctrl_str == NULL) {
++ EVPerr(EVP_F_EVP_KDF_CTRL_STR, EVP_R_COMMAND_NOT_SUPPORTED);
++ return -2;
++ }
++
++ ret = ctx->kmeth->ctrl_str(ctx->impl, type, value);
++ if (ret == -2)
++ EVPerr(EVP_F_EVP_KDF_CTRL_STR, EVP_R_COMMAND_NOT_SUPPORTED);
++
++ return ret;
++}
++
++size_t EVP_KDF_size(EVP_KDF_CTX *ctx)
++{
++ if (ctx == NULL)
++ return 0;
++
++ if (ctx->kmeth->size == NULL)
++ return SIZE_MAX;
++
++ return ctx->kmeth->size(ctx->impl);
++}
++
++int EVP_KDF_derive(EVP_KDF_CTX *ctx, unsigned char *key, size_t keylen)
++{
++ if (ctx == NULL)
++ return 0;
++
++ return ctx->kmeth->derive(ctx->impl, key, keylen);
++}
++
+diff -up openssl-1.1.1b/crypto/evp/p5_crpt2.c.evp-kdf openssl-1.1.1b/crypto/evp/p5_crpt2.c
+--- openssl-1.1.1b/crypto/evp/p5_crpt2.c.evp-kdf 2019-02-26 15:15:30.000000000 +0100
++++ openssl-1.1.1b/crypto/evp/p5_crpt2.c 2019-02-28 13:05:05.652521456 +0100
+@@ -1,5 +1,5 @@
+ /*
+- * Copyright 1999-2016 The OpenSSL Project Authors. All Rights Reserved.
++ * Copyright 1999-2018 The OpenSSL Project Authors. All Rights Reserved.
+ *
+ * Licensed under the OpenSSL license (the "License"). You may not use
+ * this file except in compliance with the License. You can obtain a copy
+@@ -10,105 +10,51 @@
+ #include <stdio.h>
+ #include <stdlib.h>
+ #include "internal/cryptlib.h"
+-# include <openssl/x509.h>
+-# include <openssl/evp.h>
+-# include <openssl/hmac.h>
+-# include "evp_locl.h"
++#include <openssl/x509.h>
++#include <openssl/evp.h>
++#include <openssl/kdf.h>
++#include <openssl/hmac.h>
++#include "internal/evp_int.h"
++#include "evp_locl.h"
+
+ /* set this to print out info about the keygen algorithm */
+ /* #define OPENSSL_DEBUG_PKCS5V2 */
+
+-# ifdef OPENSSL_DEBUG_PKCS5V2
++#ifdef OPENSSL_DEBUG_PKCS5V2
+ static void h__dump(const unsigned char *p, int len);
+-# endif
+-
+-/*
+- * This is an implementation of PKCS#5 v2.0 password based encryption key
+- * derivation function PBKDF2. SHA1 version verified against test vectors
+- * posted by Peter Gutmann to the PKCS-TNG mailing list.
+- */
++#endif
+
+ int PKCS5_PBKDF2_HMAC(const char *pass, int passlen,
+ const unsigned char *salt, int saltlen, int iter,
+ const EVP_MD *digest, int keylen, unsigned char *out)
+ {
+ const char *empty = "";
+- unsigned char digtmp[EVP_MAX_MD_SIZE], *p, itmp[4];
+- int cplen, j, k, tkeylen, mdlen;
+- unsigned long i = 1;
+- HMAC_CTX *hctx_tpl = NULL, *hctx = NULL;
+-
+- mdlen = EVP_MD_size(digest);
+- if (mdlen < 0)
+- return 0;
++ int rv = 1;
++ EVP_KDF_CTX *kctx;
+
+- hctx_tpl = HMAC_CTX_new();
+- if (hctx_tpl == NULL)
+- return 0;
+- p = out;
+- tkeylen = keylen;
++ /* Keep documented behaviour. */
+ if (pass == NULL) {
+ pass = empty;
+ passlen = 0;
+ } else if (passlen == -1) {
+ passlen = strlen(pass);
+ }
+- if (!HMAC_Init_ex(hctx_tpl, pass, passlen, digest, NULL)) {
+- HMAC_CTX_free(hctx_tpl);
+- return 0;
+- }
+- hctx = HMAC_CTX_new();
+- if (hctx == NULL) {
+- HMAC_CTX_free(hctx_tpl);
++ if (salt == NULL && saltlen == 0)
++ salt = (unsigned char *)empty;
++
++ kctx = EVP_KDF_CTX_new_id(EVP_KDF_PBKDF2);
++ if (kctx == NULL)
+ return 0;
+- }
+- while (tkeylen) {
+- if (tkeylen > mdlen)
+- cplen = mdlen;
+- else
+- cplen = tkeylen;
+- /*
+- * We are unlikely to ever use more than 256 blocks (5120 bits!) but
+- * just in case...
+- */
+- itmp[0] = (unsigned char)((i >> 24) & 0xff);
+- itmp[1] = (unsigned char)((i >> 16) & 0xff);
+- itmp[2] = (unsigned char)((i >> 8) & 0xff);
+- itmp[3] = (unsigned char)(i & 0xff);
+- if (!HMAC_CTX_copy(hctx, hctx_tpl)) {
+- HMAC_CTX_free(hctx);
+- HMAC_CTX_free(hctx_tpl);
+- return 0;
+- }
+- if (!HMAC_Update(hctx, salt, saltlen)
+- || !HMAC_Update(hctx, itmp, 4)
+- || !HMAC_Final(hctx, digtmp, NULL)) {
+- HMAC_CTX_free(hctx);
+- HMAC_CTX_free(hctx_tpl);
+- return 0;
+- }
+- memcpy(p, digtmp, cplen);
+- for (j = 1; j < iter; j++) {
+- if (!HMAC_CTX_copy(hctx, hctx_tpl)) {
+- HMAC_CTX_free(hctx);
+- HMAC_CTX_free(hctx_tpl);
+- return 0;
+- }
+- if (!HMAC_Update(hctx, digtmp, mdlen)
+- || !HMAC_Final(hctx, digtmp, NULL)) {
+- HMAC_CTX_free(hctx);
+- HMAC_CTX_free(hctx_tpl);
+- return 0;
+- }
+- for (k = 0; k < cplen; k++)
+- p[k] ^= digtmp[k];
+- }
+- tkeylen -= cplen;
+- i++;
+- p += cplen;
+- }
+- HMAC_CTX_free(hctx);
+- HMAC_CTX_free(hctx_tpl);
++ if (EVP_KDF_ctrl(kctx, EVP_KDF_CTRL_SET_PASS, pass, (size_t)passlen) != 1
++ || EVP_KDF_ctrl(kctx, EVP_KDF_CTRL_SET_SALT,
++ salt, (size_t)saltlen) != 1
++ || EVP_KDF_ctrl(kctx, EVP_KDF_CTRL_SET_ITER, iter) != 1
++ || EVP_KDF_ctrl(kctx, EVP_KDF_CTRL_SET_MD, digest) != 1
++ || EVP_KDF_derive(kctx, out, keylen) != 1)
++ rv = 0;
++
++ EVP_KDF_CTX_free(kctx);
++
+ # ifdef OPENSSL_DEBUG_PKCS5V2
+ fprintf(stderr, "Password:\n");
+ h__dump(pass, passlen);
+@@ -118,7 +64,7 @@ int PKCS5_PBKDF2_HMAC(const char *pass,
+ fprintf(stderr, "Key:\n");
+ h__dump(out, keylen);
+ # endif
+- return 1;
++ return rv;
+ }
+
+ int PKCS5_PBKDF2_HMAC_SHA1(const char *pass, int passlen,
+diff -up openssl-1.1.1b/crypto/evp/pbe_scrypt.c.evp-kdf openssl-1.1.1b/crypto/evp/pbe_scrypt.c
+--- openssl-1.1.1b/crypto/evp/pbe_scrypt.c.evp-kdf 2019-02-26 15:15:30.000000000 +0100
++++ openssl-1.1.1b/crypto/evp/pbe_scrypt.c 2019-02-28 13:33:18.446264056 +0100
+@@ -7,135 +7,12 @@
+ * https://www.openssl.org/source/license.html
+ */
+
+-#include <stddef.h>
+-#include <stdio.h>
+-#include <string.h>
+ #include <openssl/evp.h>
+ #include <openssl/err.h>
+-#include "internal/numbers.h"
++#include <openssl/kdf.h>
+
+ #ifndef OPENSSL_NO_SCRYPT
+
+-#define R(a,b) (((a) << (b)) | ((a) >> (32 - (b))))
+-static void salsa208_word_specification(uint32_t inout[16])
+-{
+- int i;
+- uint32_t x[16];
+- memcpy(x, inout, sizeof(x));
+- for (i = 8; i > 0; i -= 2) {
+- x[4] ^= R(x[0] + x[12], 7);
+- x[8] ^= R(x[4] + x[0], 9);
+- x[12] ^= R(x[8] + x[4], 13);
+- x[0] ^= R(x[12] + x[8], 18);
+- x[9] ^= R(x[5] + x[1], 7);
+- x[13] ^= R(x[9] + x[5], 9);
+- x[1] ^= R(x[13] + x[9], 13);
+- x[5] ^= R(x[1] + x[13], 18);
+- x[14] ^= R(x[10] + x[6], 7);
+- x[2] ^= R(x[14] + x[10], 9);
+- x[6] ^= R(x[2] + x[14], 13);
+- x[10] ^= R(x[6] + x[2], 18);
+- x[3] ^= R(x[15] + x[11], 7);
+- x[7] ^= R(x[3] + x[15], 9);
+- x[11] ^= R(x[7] + x[3], 13);
+- x[15] ^= R(x[11] + x[7], 18);
+- x[1] ^= R(x[0] + x[3], 7);
+- x[2] ^= R(x[1] + x[0], 9);
+- x[3] ^= R(x[2] + x[1], 13);
+- x[0] ^= R(x[3] + x[2], 18);
+- x[6] ^= R(x[5] + x[4], 7);
+- x[7] ^= R(x[6] + x[5], 9);
+- x[4] ^= R(x[7] + x[6], 13);
+- x[5] ^= R(x[4] + x[7], 18);
+- x[11] ^= R(x[10] + x[9], 7);
+- x[8] ^= R(x[11] + x[10], 9);
+- x[9] ^= R(x[8] + x[11], 13);
+- x[10] ^= R(x[9] + x[8], 18);
+- x[12] ^= R(x[15] + x[14], 7);
+- x[13] ^= R(x[12] + x[15], 9);
+- x[14] ^= R(x[13] + x[12], 13);
+- x[15] ^= R(x[14] + x[13], 18);
+- }
+- for (i = 0; i < 16; ++i)
+- inout[i] += x[i];
+- OPENSSL_cleanse(x, sizeof(x));
+-}
+-
+-static void scryptBlockMix(uint32_t *B_, uint32_t *B, uint64_t r)
+-{
+- uint64_t i, j;
+- uint32_t X[16], *pB;
+-
+- memcpy(X, B + (r * 2 - 1) * 16, sizeof(X));
+- pB = B;
+- for (i = 0; i < r * 2; i++) {
+- for (j = 0; j < 16; j++)
+- X[j] ^= *pB++;
+- salsa208_word_specification(X);
+- memcpy(B_ + (i / 2 + (i & 1) * r) * 16, X, sizeof(X));
+- }
+- OPENSSL_cleanse(X, sizeof(X));
+-}
+-
+-static void scryptROMix(unsigned char *B, uint64_t r, uint64_t N,
+- uint32_t *X, uint32_t *T, uint32_t *V)
+-{
+- unsigned char *pB;
+- uint32_t *pV;
+- uint64_t i, k;
+-
+- /* Convert from little endian input */
+- for (pV = V, i = 0, pB = B; i < 32 * r; i++, pV++) {
+- *pV = *pB++;
+- *pV |= *pB++ << 8;
+- *pV |= *pB++ << 16;
+- *pV |= (uint32_t)*pB++ << 24;
+- }
+-
+- for (i = 1; i < N; i++, pV += 32 * r)
+- scryptBlockMix(pV, pV - 32 * r, r);
+-
+- scryptBlockMix(X, V + (N - 1) * 32 * r, r);
+-
+- for (i = 0; i < N; i++) {
+- uint32_t j;
+- j = X[16 * (2 * r - 1)] % N;
+- pV = V + 32 * r * j;
+- for (k = 0; k < 32 * r; k++)
+- T[k] = X[k] ^ *pV++;
+- scryptBlockMix(X, T, r);
+- }
+- /* Convert output to little endian */
+- for (i = 0, pB = B; i < 32 * r; i++) {
+- uint32_t xtmp = X[i];
+- *pB++ = xtmp & 0xff;
+- *pB++ = (xtmp >> 8) & 0xff;
+- *pB++ = (xtmp >> 16) & 0xff;
+- *pB++ = (xtmp >> 24) & 0xff;
+- }
+-}
+-
+-#ifndef SIZE_MAX
+-# define SIZE_MAX ((size_t)-1)
+-#endif
+-
+-/*
+- * Maximum power of two that will fit in uint64_t: this should work on
+- * most (all?) platforms.
+- */
+-
+-#define LOG2_UINT64_MAX (sizeof(uint64_t) * 8 - 1)
+-
+-/*
+- * Maximum value of p * r:
+- * p <= ((2^32-1) * hLen) / MFLen =>
+- * p <= ((2^32-1) * 32) / (128 * r) =>
+- * p * r <= (2^30-1)
+- *
+- */
+-
+-#define SCRYPT_PR_MAX ((1 << 30) - 1)
+-
+ /*
+ * Maximum permitted memory allow this to be overridden with Configuration
+ * option: e.g. -DSCRYPT_MAX_MEM=0 for maximum possible.
+@@ -160,107 +37,43 @@ int EVP_PBE_scrypt(const char *pass, siz
+ uint64_t N, uint64_t r, uint64_t p, uint64_t maxmem,
+ unsigned char *key, size_t keylen)
+ {
+- int rv = 0;
+- unsigned char *B;
+- uint32_t *X, *V, *T;
+- uint64_t i, Blen, Vlen;
+-
+- /* Sanity check parameters */
+- /* initial check, r,p must be non zero, N >= 2 and a power of 2 */
+- if (r == 0 || p == 0 || N < 2 || (N & (N - 1)))
+- return 0;
+- /* Check p * r < SCRYPT_PR_MAX avoiding overflow */
+- if (p > SCRYPT_PR_MAX / r) {
+- EVPerr(EVP_F_EVP_PBE_SCRYPT, EVP_R_MEMORY_LIMIT_EXCEEDED);
+- return 0;
+- }
+-
+- /*
+- * Need to check N: if 2^(128 * r / 8) overflows limit this is
+- * automatically satisfied since N <= UINT64_MAX.
+- */
+-
+- if (16 * r <= LOG2_UINT64_MAX) {
+- if (N >= (((uint64_t)1) << (16 * r))) {
+- EVPerr(EVP_F_EVP_PBE_SCRYPT, EVP_R_MEMORY_LIMIT_EXCEEDED);
+- return 0;
+- }
+- }
++ const char *empty = "";
++ int rv = 1;
++ EVP_KDF_CTX *kctx;
+
+- /* Memory checks: check total allocated buffer size fits in uint64_t */
+-
+- /*
+- * B size in section 5 step 1.S
+- * Note: we know p * 128 * r < UINT64_MAX because we already checked
+- * p * r < SCRYPT_PR_MAX
+- */
+- Blen = p * 128 * r;
+- /*
+- * Yet we pass it as integer to PKCS5_PBKDF2_HMAC... [This would
+- * have to be revised when/if PKCS5_PBKDF2_HMAC accepts size_t.]
+- */
+- if (Blen > INT_MAX) {
+- EVPerr(EVP_F_EVP_PBE_SCRYPT, EVP_R_MEMORY_LIMIT_EXCEEDED);
+- return 0;
+- }
+-
+- /*
+- * Check 32 * r * (N + 2) * sizeof(uint32_t) fits in uint64_t
+- * This is combined size V, X and T (section 4)
+- */
+- i = UINT64_MAX / (32 * sizeof(uint32_t));
+- if (N + 2 > i / r) {
+- EVPerr(EVP_F_EVP_PBE_SCRYPT, EVP_R_MEMORY_LIMIT_EXCEEDED);
++ if (r > UINT32_MAX || p > UINT32_MAX) {
++ EVPerr(EVP_F_EVP_PBE_SCRYPT, EVP_R_PARAMETER_TOO_LARGE);
+ return 0;
+ }
+- Vlen = 32 * r * (N + 2) * sizeof(uint32_t);
+
+- /* check total allocated size fits in uint64_t */
+- if (Blen > UINT64_MAX - Vlen) {
+- EVPerr(EVP_F_EVP_PBE_SCRYPT, EVP_R_MEMORY_LIMIT_EXCEEDED);
+- return 0;
++ /* Maintain existing behaviour. */
++ if (pass == NULL) {
++ pass = empty;
++ passlen = 0;
++ }
++ if (salt == NULL) {
++ salt = (const unsigned char *)empty;
++ saltlen = 0;
+ }
+-
+ if (maxmem == 0)
+ maxmem = SCRYPT_MAX_MEM;
+
+- /* Check that the maximum memory doesn't exceed a size_t limits */
+- if (maxmem > SIZE_MAX)
+- maxmem = SIZE_MAX;
+-
+- if (Blen + Vlen > maxmem) {
+- EVPerr(EVP_F_EVP_PBE_SCRYPT, EVP_R_MEMORY_LIMIT_EXCEEDED);
++ kctx = EVP_KDF_CTX_new_id(EVP_KDF_SCRYPT);
++ if (kctx == NULL)
+ return 0;
+- }
+
+- /* If no key return to indicate parameters are OK */
+- if (key == NULL)
+- return 1;
+-
+- B = OPENSSL_malloc((size_t)(Blen + Vlen));
+- if (B == NULL) {
+- EVPerr(EVP_F_EVP_PBE_SCRYPT, ERR_R_MALLOC_FAILURE);
+- return 0;
+- }
+- X = (uint32_t *)(B + Blen);
+- T = X + 32 * r;
+- V = T + 32 * r;
+- if (PKCS5_PBKDF2_HMAC(pass, passlen, salt, saltlen, 1, EVP_sha256(),
+- (int)Blen, B) == 0)
+- goto err;
+-
+- for (i = 0; i < p; i++)
+- scryptROMix(B + 128 * r * i, r, N, X, T, V);
+-
+- if (PKCS5_PBKDF2_HMAC(pass, passlen, B, (int)Blen, 1, EVP_sha256(),
+- keylen, key) == 0)
+- goto err;
+- rv = 1;
+- err:
+- if (rv == 0)
+- EVPerr(EVP_F_EVP_PBE_SCRYPT, EVP_R_PBKDF2_ERROR);
++ if (EVP_KDF_ctrl(kctx, EVP_KDF_CTRL_SET_PASS, pass, (size_t)passlen) != 1
++ || EVP_KDF_ctrl(kctx, EVP_KDF_CTRL_SET_SALT,
++ salt, (size_t)saltlen) != 1
++ || EVP_KDF_ctrl(kctx, EVP_KDF_CTRL_SET_SCRYPT_N, N) != 1
++ || EVP_KDF_ctrl(kctx, EVP_KDF_CTRL_SET_SCRYPT_R, (uint32_t)r) != 1
++ || EVP_KDF_ctrl(kctx, EVP_KDF_CTRL_SET_SCRYPT_P, (uint32_t)p) != 1
++ || EVP_KDF_ctrl(kctx, EVP_KDF_CTRL_SET_MAXMEM_BYTES, maxmem) != 1
++ || EVP_KDF_derive(kctx, key, keylen) != 1)
++ rv = 0;
+
+- OPENSSL_clear_free(B, (size_t)(Blen + Vlen));
++ EVP_KDF_CTX_free(kctx);
+ return rv;
+ }
++
+ #endif
+diff -up openssl-1.1.1b/crypto/evp/pkey_kdf.c.evp-kdf openssl-1.1.1b/crypto/evp/pkey_kdf.c
+--- openssl-1.1.1b/crypto/evp/pkey_kdf.c.evp-kdf 2019-02-28 13:05:05.653521437 +0100
++++ openssl-1.1.1b/crypto/evp/pkey_kdf.c 2019-02-28 13:05:05.653521437 +0100
+@@ -0,0 +1,255 @@
++/*
++ * Copyright 2018 The OpenSSL Project Authors. All Rights Reserved.
++ * Copyright (c) 2018, Oracle and/or its affiliates. All rights reserved.
++ *
++ * Licensed under the Apache License 2.0 (the "License"). You may not use
++ * this file except in compliance with the License. You can obtain a copy
++ * in the file LICENSE in the source distribution or at
++ * https://www.openssl.org/source/license.html
++ */
++
++#include <string.h>
++#include <openssl/evp.h>
++#include <openssl/err.h>
++#include <openssl/kdf.h>
++#include "internal/evp_int.h"
++
++static int pkey_kdf_init(EVP_PKEY_CTX *ctx)
++{
++ EVP_KDF_CTX *kctx;
++
++ kctx = EVP_KDF_CTX_new_id(ctx->pmeth->pkey_id);
++ if (kctx == NULL)
++ return 0;
++
++ ctx->data = kctx;
++ return 1;
++}
++
++static void pkey_kdf_cleanup(EVP_PKEY_CTX *ctx)
++{
++ EVP_KDF_CTX *kctx = ctx->data;
++
++ EVP_KDF_CTX_free(kctx);
++}
++
++static int pkey_kdf_ctrl(EVP_PKEY_CTX *ctx, int type, int p1, void *p2)
++{
++ EVP_KDF_CTX *kctx = ctx->data;
++ uint64_t u64_value;
++ int cmd;
++ int ret;
++
++ switch (type) {
++ case EVP_PKEY_CTRL_PASS:
++ cmd = EVP_KDF_CTRL_SET_PASS;
++ break;
++ case EVP_PKEY_CTRL_HKDF_SALT:
++ case EVP_PKEY_CTRL_SCRYPT_SALT:
++ cmd = EVP_KDF_CTRL_SET_SALT;
++ break;
++ case EVP_PKEY_CTRL_TLS_MD:
++ case EVP_PKEY_CTRL_HKDF_MD:
++ cmd = EVP_KDF_CTRL_SET_MD;
++ break;
++ case EVP_PKEY_CTRL_TLS_SECRET:
++ cmd = EVP_KDF_CTRL_SET_TLS_SECRET;
++ ret = EVP_KDF_ctrl(kctx, EVP_KDF_CTRL_RESET_TLS_SEED);
++ if (ret < 1)
++ return ret;
++ break;
++ case EVP_PKEY_CTRL_TLS_SEED:
++ cmd = EVP_KDF_CTRL_ADD_TLS_SEED;
++ break;
++ case EVP_PKEY_CTRL_HKDF_KEY:
++ cmd = EVP_KDF_CTRL_SET_KEY;
++ break;
++ case EVP_PKEY_CTRL_HKDF_INFO:
++ cmd = EVP_KDF_CTRL_ADD_HKDF_INFO;
++ break;
++ case EVP_PKEY_CTRL_HKDF_MODE:
++ cmd = EVP_KDF_CTRL_SET_HKDF_MODE;
++ break;
++ case EVP_PKEY_CTRL_SCRYPT_N:
++ cmd = EVP_KDF_CTRL_SET_SCRYPT_N;
++ break;
++ case EVP_PKEY_CTRL_SCRYPT_R:
++ cmd = EVP_KDF_CTRL_SET_SCRYPT_R;
++ break;
++ case EVP_PKEY_CTRL_SCRYPT_P:
++ cmd = EVP_KDF_CTRL_SET_SCRYPT_P;
++ break;
++ case EVP_PKEY_CTRL_SCRYPT_MAXMEM_BYTES:
++ cmd = EVP_KDF_CTRL_SET_MAXMEM_BYTES;
++ break;
++ default:
++ return -2;
++ }
++
++ switch (cmd) {
++ case EVP_KDF_CTRL_SET_PASS:
++ case EVP_KDF_CTRL_SET_SALT:
++ case EVP_KDF_CTRL_SET_KEY:
++ case EVP_KDF_CTRL_SET_TLS_SECRET:
++ case EVP_KDF_CTRL_ADD_TLS_SEED:
++ case EVP_KDF_CTRL_ADD_HKDF_INFO:
++ return EVP_KDF_ctrl(kctx, cmd, (const unsigned char *)p2, (size_t)p1);
++
++ case EVP_KDF_CTRL_SET_MD:
++ return EVP_KDF_ctrl(kctx, cmd, (const EVP_MD *)p2);
++
++ case EVP_KDF_CTRL_SET_HKDF_MODE:
++ return EVP_KDF_ctrl(kctx, cmd, (int)p1);
++
++ case EVP_KDF_CTRL_SET_SCRYPT_R:
++ case EVP_KDF_CTRL_SET_SCRYPT_P:
++ u64_value = *(uint64_t *)p2;
++ if (u64_value > UINT32_MAX) {
++ EVPerr(EVP_F_PKEY_KDF_CTRL, EVP_R_PARAMETER_TOO_LARGE);
++ return 0;
++ }
++
++ return EVP_KDF_ctrl(kctx, cmd, (uint32_t)u64_value);
++
++ case EVP_KDF_CTRL_SET_SCRYPT_N:
++ case EVP_KDF_CTRL_SET_MAXMEM_BYTES:
++ return EVP_KDF_ctrl(kctx, cmd, *(uint64_t *)p2);
++
++ default:
++ return 0;
++ }
++}
++
++static int pkey_kdf_ctrl_str(EVP_PKEY_CTX *ctx, const char *type,
++ const char *value)
++{
++ EVP_KDF_CTX *kctx = ctx->data;
++
++ if (strcmp(type, "md") == 0)
++ return EVP_KDF_ctrl_str(kctx, "digest", value);
++ return EVP_KDF_ctrl_str(kctx, type, value);
++}
++
++static int pkey_kdf_derive_init(EVP_PKEY_CTX *ctx)
++{
++ EVP_KDF_CTX *kctx = ctx->data;
++
++ EVP_KDF_reset(kctx);
++ return 1;
++}
++
++/*
++ * For fixed-output algorithms the keylen parameter is an "out" parameter
++ * otherwise it is an "in" parameter.
++ */
++static int pkey_kdf_derive(EVP_PKEY_CTX *ctx, unsigned char *key,
++ size_t *keylen)
++{
++ EVP_KDF_CTX *kctx = ctx->data;
++ size_t outlen = EVP_KDF_size(kctx);
++
++ if (outlen == 0 || outlen == SIZE_MAX) {
++ /* Variable-output algorithm */
++ if (key == NULL)
++ return 0;
++ } else {
++ /* Fixed-output algorithm */
++ *keylen = outlen;
++ if (key == NULL)
++ return 1;
++ }
++ return EVP_KDF_derive(kctx, key, *keylen);
++}
++
++#ifndef OPENSSL_NO_SCRYPT
++const EVP_PKEY_METHOD scrypt_pkey_meth = {
++ EVP_PKEY_SCRYPT,
++ 0,
++ pkey_kdf_init,
++ 0,
++ pkey_kdf_cleanup,
++
++ 0, 0,
++ 0, 0,
++
++ 0,
++ 0,
++
++ 0,
++ 0,
++
++ 0, 0,
++
++ 0, 0, 0, 0,
++
++ 0, 0,
++
++ 0, 0,
++
++ pkey_kdf_derive_init,
++ pkey_kdf_derive,
++ pkey_kdf_ctrl,
++ pkey_kdf_ctrl_str
++};
++#endif
++
++const EVP_PKEY_METHOD tls1_prf_pkey_meth = {
++ EVP_PKEY_TLS1_PRF,
++ EVP_PKEY_FLAG_FIPS,
++ pkey_kdf_init,
++ 0,
++ pkey_kdf_cleanup,
++
++ 0, 0,
++ 0, 0,
++
++ 0,
++ 0,
++
++ 0,
++ 0,
++
++ 0, 0,
++
++ 0, 0, 0, 0,
++
++ 0, 0,
++
++ 0, 0,
++
++ pkey_kdf_derive_init,
++ pkey_kdf_derive,
++ pkey_kdf_ctrl,
++ pkey_kdf_ctrl_str
++};
++
++const EVP_PKEY_METHOD hkdf_pkey_meth = {
++ EVP_PKEY_HKDF,
++ EVP_PKEY_FLAG_FIPS,
++ pkey_kdf_init,
++ 0,
++ pkey_kdf_cleanup,
++
++ 0, 0,
++ 0, 0,
++
++ 0,
++ 0,
++
++ 0,
++ 0,
++
++ 0, 0,
++
++ 0, 0, 0, 0,
++
++ 0, 0,
++
++ 0, 0,
++
++ pkey_kdf_derive_init,
++ pkey_kdf_derive,
++ pkey_kdf_ctrl,
++ pkey_kdf_ctrl_str
++};
++
+diff -up openssl-1.1.1b/crypto/include/internal/evp_int.h.evp-kdf openssl-1.1.1b/crypto/include/internal/evp_int.h
+--- openssl-1.1.1b/crypto/include/internal/evp_int.h.evp-kdf 2019-02-28 13:05:05.304527888 +0100
++++ openssl-1.1.1b/crypto/include/internal/evp_int.h 2019-02-28 13:05:05.653521437 +0100
+@@ -112,6 +112,24 @@ extern const EVP_PKEY_METHOD hkdf_pkey_m
+ extern const EVP_PKEY_METHOD poly1305_pkey_meth;
+ extern const EVP_PKEY_METHOD siphash_pkey_meth;
+
++/* struct evp_kdf_impl_st is defined by the implementation */
++typedef struct evp_kdf_impl_st EVP_KDF_IMPL;
++typedef struct {
++ int type;
++ EVP_KDF_IMPL *(*new) (void);
++ void (*free) (EVP_KDF_IMPL *impl);
++ void (*reset) (EVP_KDF_IMPL *impl);
++ int (*ctrl) (EVP_KDF_IMPL *impl, int cmd, va_list args);
++ int (*ctrl_str) (EVP_KDF_IMPL *impl, const char *type, const char *value);
++ size_t (*size) (EVP_KDF_IMPL *impl);
++ int (*derive) (EVP_KDF_IMPL *impl, unsigned char *key, size_t keylen);
++} EVP_KDF_METHOD;
++
++extern const EVP_KDF_METHOD pbkdf2_kdf_meth;
++extern const EVP_KDF_METHOD scrypt_kdf_meth;
++extern const EVP_KDF_METHOD tls1_prf_kdf_meth;
++extern const EVP_KDF_METHOD hkdf_kdf_meth;
++
+ struct evp_md_st {
+ int type;
+ int pkey_type;
+diff -up openssl-1.1.1b/crypto/kdf/build.info.evp-kdf openssl-1.1.1b/crypto/kdf/build.info
+--- openssl-1.1.1b/crypto/kdf/build.info.evp-kdf 2019-02-26 15:15:30.000000000 +0100
++++ openssl-1.1.1b/crypto/kdf/build.info 2019-02-28 13:05:05.653521437 +0100
+@@ -1,3 +1,3 @@
+ LIBS=../../libcrypto
+ SOURCE[../../libcrypto]=\
+- tls1_prf.c kdf_err.c hkdf.c scrypt.c
++ tls1_prf.c kdf_err.c kdf_util.c hkdf.c scrypt.c pbkdf2.c
+diff -up openssl-1.1.1b/crypto/kdf/hkdf.c.evp-kdf openssl-1.1.1b/crypto/kdf/hkdf.c
+--- openssl-1.1.1b/crypto/kdf/hkdf.c.evp-kdf 2019-02-26 15:15:30.000000000 +0100
++++ openssl-1.1.1b/crypto/kdf/hkdf.c 2019-02-28 13:05:05.653521437 +0100
+@@ -8,32 +8,33 @@
+ */
+
+ #include <stdlib.h>
++#include <stdarg.h>
+ #include <string.h>
+ #include <openssl/hmac.h>
+-#include <openssl/kdf.h>
+ #include <openssl/evp.h>
++#include <openssl/kdf.h>
+ #include "internal/cryptlib.h"
+ #include "internal/evp_int.h"
++#include "kdf_local.h"
+
+ #define HKDF_MAXBUF 1024
+
+-static unsigned char *HKDF(const EVP_MD *evp_md,
+- const unsigned char *salt, size_t salt_len,
+- const unsigned char *key, size_t key_len,
+- const unsigned char *info, size_t info_len,
+- unsigned char *okm, size_t okm_len);
+-
+-static unsigned char *HKDF_Extract(const EVP_MD *evp_md,
+- const unsigned char *salt, size_t salt_len,
+- const unsigned char *key, size_t key_len,
+- unsigned char *prk, size_t *prk_len);
+-
+-static unsigned char *HKDF_Expand(const EVP_MD *evp_md,
+- const unsigned char *prk, size_t prk_len,
+- const unsigned char *info, size_t info_len,
+- unsigned char *okm, size_t okm_len);
++static void kdf_hkdf_reset(EVP_KDF_IMPL *impl);
++static int HKDF(const EVP_MD *evp_md,
++ const unsigned char *salt, size_t salt_len,
++ const unsigned char *key, size_t key_len,
++ const unsigned char *info, size_t info_len,
++ unsigned char *okm, size_t okm_len);
++static int HKDF_Extract(const EVP_MD *evp_md,
++ const unsigned char *salt, size_t salt_len,
++ const unsigned char *key, size_t key_len,
++ unsigned char *prk, size_t prk_len);
++static int HKDF_Expand(const EVP_MD *evp_md,
++ const unsigned char *prk, size_t prk_len,
++ const unsigned char *info, size_t info_len,
++ unsigned char *okm, size_t okm_len);
+
+-typedef struct {
++struct evp_kdf_impl_st {
+ int mode;
+ const EVP_MD *md;
+ unsigned char *salt;
+@@ -42,230 +43,208 @@ typedef struct {
+ size_t key_len;
+ unsigned char info[HKDF_MAXBUF];
+ size_t info_len;
+-} HKDF_PKEY_CTX;
++};
+
+-static int pkey_hkdf_init(EVP_PKEY_CTX *ctx)
++static EVP_KDF_IMPL *kdf_hkdf_new(void)
+ {
+- HKDF_PKEY_CTX *kctx;
+-
+- if ((kctx = OPENSSL_zalloc(sizeof(*kctx))) == NULL) {
+- KDFerr(KDF_F_PKEY_HKDF_INIT, ERR_R_MALLOC_FAILURE);
+- return 0;
+- }
++ EVP_KDF_IMPL *impl;
+
+- ctx->data = kctx;
++ if ((impl = OPENSSL_zalloc(sizeof(*impl))) == NULL)
++ KDFerr(KDF_F_KDF_HKDF_NEW, ERR_R_MALLOC_FAILURE);
++ return impl;
++}
+
+- return 1;
++static void kdf_hkdf_free(EVP_KDF_IMPL *impl)
++{
++ kdf_hkdf_reset(impl);
++ OPENSSL_free(impl);
+ }
+
+-static void pkey_hkdf_cleanup(EVP_PKEY_CTX *ctx)
++static void kdf_hkdf_reset(EVP_KDF_IMPL *impl)
+ {
+- HKDF_PKEY_CTX *kctx = ctx->data;
+- OPENSSL_clear_free(kctx->salt, kctx->salt_len);
+- OPENSSL_clear_free(kctx->key, kctx->key_len);
+- OPENSSL_cleanse(kctx->info, kctx->info_len);
+- OPENSSL_free(kctx);
++ OPENSSL_free(impl->salt);
++ OPENSSL_clear_free(impl->key, impl->key_len);
++ OPENSSL_cleanse(impl->info, impl->info_len);
++ memset(impl, 0, sizeof(*impl));
+ }
+
+-static int pkey_hkdf_ctrl(EVP_PKEY_CTX *ctx, int type, int p1, void *p2)
++static int kdf_hkdf_ctrl(EVP_KDF_IMPL *impl, int cmd, va_list args)
+ {
+- HKDF_PKEY_CTX *kctx = ctx->data;
++ const unsigned char *p;
++ size_t len;
++ const EVP_MD *md;
+
+- switch (type) {
+- case EVP_PKEY_CTRL_HKDF_MD:
+- if (p2 == NULL)
++ switch (cmd) {
++ case EVP_KDF_CTRL_SET_MD:
++ md = va_arg(args, const EVP_MD *);
++ if (md == NULL)
+ return 0;
+
+- kctx->md = p2;
++ impl->md = md;
+ return 1;
+
+- case EVP_PKEY_CTRL_HKDF_MODE:
+- kctx->mode = p1;
++ case EVP_KDF_CTRL_SET_HKDF_MODE:
++ impl->mode = va_arg(args, int);
+ return 1;
+
+- case EVP_PKEY_CTRL_HKDF_SALT:
+- if (p1 == 0 || p2 == NULL)
++ case EVP_KDF_CTRL_SET_SALT:
++ p = va_arg(args, const unsigned char *);
++ len = va_arg(args, size_t);
++ if (len == 0 || p == NULL)
+ return 1;
+
+- if (p1 < 0)
+- return 0;
+-
+- if (kctx->salt != NULL)
+- OPENSSL_clear_free(kctx->salt, kctx->salt_len);
+-
+- kctx->salt = OPENSSL_memdup(p2, p1);
+- if (kctx->salt == NULL)
++ OPENSSL_free(impl->salt);
++ impl->salt = OPENSSL_memdup(p, len);
++ if (impl->salt == NULL)
+ return 0;
+
+- kctx->salt_len = p1;
++ impl->salt_len = len;
+ return 1;
+
+- case EVP_PKEY_CTRL_HKDF_KEY:
+- if (p1 < 0)
++ case EVP_KDF_CTRL_SET_KEY:
++ p = va_arg(args, const unsigned char *);
++ len = va_arg(args, size_t);
++ OPENSSL_clear_free(impl->key, impl->key_len);
++ impl->key = OPENSSL_memdup(p, len);
++ if (impl->key == NULL)
+ return 0;
+
+- if (kctx->key != NULL)
+- OPENSSL_clear_free(kctx->key, kctx->key_len);
+-
+- kctx->key = OPENSSL_memdup(p2, p1);
+- if (kctx->key == NULL)
+- return 0;
++ impl->key_len = len;
++ return 1;
+
+- kctx->key_len = p1;
++ case EVP_KDF_CTRL_RESET_HKDF_INFO:
++ OPENSSL_cleanse(impl->info, impl->info_len);
++ impl->info_len = 0;
+ return 1;
+
+- case EVP_PKEY_CTRL_HKDF_INFO:
+- if (p1 == 0 || p2 == NULL)
++ case EVP_KDF_CTRL_ADD_HKDF_INFO:
++ p = va_arg(args, const unsigned char *);
++ len = va_arg(args, size_t);
++ if (len == 0 || p == NULL)
+ return 1;
+
+- if (p1 < 0 || p1 > (int)(HKDF_MAXBUF - kctx->info_len))
++ if (len > (HKDF_MAXBUF - impl->info_len))
+ return 0;
+
+- memcpy(kctx->info + kctx->info_len, p2, p1);
+- kctx->info_len += p1;
++ memcpy(impl->info + impl->info_len, p, len);
++ impl->info_len += len;
+ return 1;
+
+ default:
+ return -2;
+-
+ }
+ }
+
+-static int pkey_hkdf_ctrl_str(EVP_PKEY_CTX *ctx, const char *type,
+- const char *value)
++static int kdf_hkdf_ctrl_str(EVP_KDF_IMPL *impl, const char *type,
++ const char *value)
+ {
+ if (strcmp(type, "mode") == 0) {
+ int mode;
+
+ if (strcmp(value, "EXTRACT_AND_EXPAND") == 0)
+- mode = EVP_PKEY_HKDEF_MODE_EXTRACT_AND_EXPAND;
++ mode = EVP_KDF_HKDF_MODE_EXTRACT_AND_EXPAND;
+ else if (strcmp(value, "EXTRACT_ONLY") == 0)
+- mode = EVP_PKEY_HKDEF_MODE_EXTRACT_ONLY;
++ mode = EVP_KDF_HKDF_MODE_EXTRACT_ONLY;
+ else if (strcmp(value, "EXPAND_ONLY") == 0)
+- mode = EVP_PKEY_HKDEF_MODE_EXPAND_ONLY;
++ mode = EVP_KDF_HKDF_MODE_EXPAND_ONLY;
+ else
+ return 0;
+
+- return EVP_PKEY_CTX_hkdf_mode(ctx, mode);
++ return call_ctrl(kdf_hkdf_ctrl, impl, EVP_KDF_CTRL_SET_HKDF_MODE, mode);
+ }
+
+- if (strcmp(type, "md") == 0)
+- return EVP_PKEY_CTX_md(ctx, EVP_PKEY_OP_DERIVE,
+- EVP_PKEY_CTRL_HKDF_MD, value);
++ if (strcmp(type, "digest") == 0)
++ return kdf_md2ctrl(impl, kdf_hkdf_ctrl, EVP_KDF_CTRL_SET_MD, value);
+
+ if (strcmp(type, "salt") == 0)
+- return EVP_PKEY_CTX_str2ctrl(ctx, EVP_PKEY_CTRL_HKDF_SALT, value);
++ return kdf_str2ctrl(impl, kdf_hkdf_ctrl, EVP_KDF_CTRL_SET_SALT, value);
+
+ if (strcmp(type, "hexsalt") == 0)
+- return EVP_PKEY_CTX_hex2ctrl(ctx, EVP_PKEY_CTRL_HKDF_SALT, value);
++ return kdf_hex2ctrl(impl, kdf_hkdf_ctrl, EVP_KDF_CTRL_SET_SALT, value);
+
+ if (strcmp(type, "key") == 0)
+- return EVP_PKEY_CTX_str2ctrl(ctx, EVP_PKEY_CTRL_HKDF_KEY, value);
++ return kdf_str2ctrl(impl, kdf_hkdf_ctrl, EVP_KDF_CTRL_SET_KEY, value);
+
+ if (strcmp(type, "hexkey") == 0)
+- return EVP_PKEY_CTX_hex2ctrl(ctx, EVP_PKEY_CTRL_HKDF_KEY, value);
++ return kdf_hex2ctrl(impl, kdf_hkdf_ctrl, EVP_KDF_CTRL_SET_KEY, value);
+
+ if (strcmp(type, "info") == 0)
+- return EVP_PKEY_CTX_str2ctrl(ctx, EVP_PKEY_CTRL_HKDF_INFO, value);
++ return kdf_str2ctrl(impl, kdf_hkdf_ctrl, EVP_KDF_CTRL_ADD_HKDF_INFO,
++ value);
+
+ if (strcmp(type, "hexinfo") == 0)
+- return EVP_PKEY_CTX_hex2ctrl(ctx, EVP_PKEY_CTRL_HKDF_INFO, value);
++ return kdf_hex2ctrl(impl, kdf_hkdf_ctrl, EVP_KDF_CTRL_ADD_HKDF_INFO,
++ value);
+
+- KDFerr(KDF_F_PKEY_HKDF_CTRL_STR, KDF_R_UNKNOWN_PARAMETER_TYPE);
+ return -2;
+ }
+
+-static int pkey_hkdf_derive_init(EVP_PKEY_CTX *ctx)
++static size_t kdf_hkdf_size(EVP_KDF_IMPL *impl)
+ {
+- HKDF_PKEY_CTX *kctx = ctx->data;
+-
+- OPENSSL_clear_free(kctx->key, kctx->key_len);
+- OPENSSL_clear_free(kctx->salt, kctx->salt_len);
+- OPENSSL_cleanse(kctx->info, kctx->info_len);
+- memset(kctx, 0, sizeof(*kctx));
++ if (impl->mode != EVP_KDF_HKDF_MODE_EXTRACT_ONLY)
++ return SIZE_MAX;
+
+- return 1;
++ if (impl->md == NULL) {
++ KDFerr(KDF_F_KDF_HKDF_SIZE, KDF_R_MISSING_MESSAGE_DIGEST);
++ return 0;
++ }
++ return EVP_MD_size(impl->md);
+ }
+
+-static int pkey_hkdf_derive(EVP_PKEY_CTX *ctx, unsigned char *key,
+- size_t *keylen)
++static int kdf_hkdf_derive(EVP_KDF_IMPL *impl, unsigned char *key,
++ size_t keylen)
+ {
+- HKDF_PKEY_CTX *kctx = ctx->data;
+-
+- if (kctx->md == NULL) {
+- KDFerr(KDF_F_PKEY_HKDF_DERIVE, KDF_R_MISSING_MESSAGE_DIGEST);
++ if (impl->md == NULL) {
++ KDFerr(KDF_F_KDF_HKDF_DERIVE, KDF_R_MISSING_MESSAGE_DIGEST);
+ return 0;
+ }
+- if (kctx->key == NULL) {
+- KDFerr(KDF_F_PKEY_HKDF_DERIVE, KDF_R_MISSING_KEY);
++ if (impl->key == NULL) {
++ KDFerr(KDF_F_KDF_HKDF_DERIVE, KDF_R_MISSING_KEY);
+ return 0;
+ }
+
+- switch (kctx->mode) {
+- case EVP_PKEY_HKDEF_MODE_EXTRACT_AND_EXPAND:
+- return HKDF(kctx->md, kctx->salt, kctx->salt_len, kctx->key,
+- kctx->key_len, kctx->info, kctx->info_len, key,
+- *keylen) != NULL;
+-
+- case EVP_PKEY_HKDEF_MODE_EXTRACT_ONLY:
+- if (key == NULL) {
+- *keylen = EVP_MD_size(kctx->md);
+- return 1;
+- }
+- return HKDF_Extract(kctx->md, kctx->salt, kctx->salt_len, kctx->key,
+- kctx->key_len, key, keylen) != NULL;
+-
+- case EVP_PKEY_HKDEF_MODE_EXPAND_ONLY:
+- return HKDF_Expand(kctx->md, kctx->key, kctx->key_len, kctx->info,
+- kctx->info_len, key, *keylen) != NULL;
++ switch (impl->mode) {
++ case EVP_KDF_HKDF_MODE_EXTRACT_AND_EXPAND:
++ return HKDF(impl->md, impl->salt, impl->salt_len, impl->key,
++ impl->key_len, impl->info, impl->info_len, key,
++ keylen);
++
++ case EVP_KDF_HKDF_MODE_EXTRACT_ONLY:
++ return HKDF_Extract(impl->md, impl->salt, impl->salt_len, impl->key,
++ impl->key_len, key, keylen);
++
++ case EVP_KDF_HKDF_MODE_EXPAND_ONLY:
++ return HKDF_Expand(impl->md, impl->key, impl->key_len, impl->info,
++ impl->info_len, key, keylen);
+
+ default:
+ return 0;
+ }
+ }
+
+-const EVP_PKEY_METHOD hkdf_pkey_meth = {
+- EVP_PKEY_HKDF,
+- 0,
+- pkey_hkdf_init,
+- 0,
+- pkey_hkdf_cleanup,
+-
+- 0, 0,
+- 0, 0,
+-
+- 0,
+- 0,
+-
+- 0,
+- 0,
+-
+- 0, 0,
+-
+- 0, 0, 0, 0,
+-
+- 0, 0,
+-
+- 0, 0,
+-
+- pkey_hkdf_derive_init,
+- pkey_hkdf_derive,
+- pkey_hkdf_ctrl,
+- pkey_hkdf_ctrl_str
++const EVP_KDF_METHOD hkdf_kdf_meth = {
++ EVP_KDF_HKDF,
++ kdf_hkdf_new,
++ kdf_hkdf_free,
++ kdf_hkdf_reset,
++ kdf_hkdf_ctrl,
++ kdf_hkdf_ctrl_str,
++ kdf_hkdf_size,
++ kdf_hkdf_derive
+ };
+
+-static unsigned char *HKDF(const EVP_MD *evp_md,
+- const unsigned char *salt, size_t salt_len,
+- const unsigned char *key, size_t key_len,
+- const unsigned char *info, size_t info_len,
+- unsigned char *okm, size_t okm_len)
++static int HKDF(const EVP_MD *evp_md,
++ const unsigned char *salt, size_t salt_len,
++ const unsigned char *key, size_t key_len,
++ const unsigned char *info, size_t info_len,
++ unsigned char *okm, size_t okm_len)
+ {
+ unsigned char prk[EVP_MAX_MD_SIZE];
+- unsigned char *ret;
+- size_t prk_len;
++ int ret;
++ size_t prk_len = EVP_MD_size(evp_md);
+
+- if (!HKDF_Extract(evp_md, salt, salt_len, key, key_len, prk, &prk_len))
+- return NULL;
++ if (!HKDF_Extract(evp_md, salt, salt_len, key, key_len, prk, prk_len))
++ return 0;
+
+ ret = HKDF_Expand(evp_md, prk, prk_len, info, info_len, okm, okm_len);
+ OPENSSL_cleanse(prk, sizeof(prk));
+@@ -273,43 +252,38 @@ static unsigned char *HKDF(const EVP_MD
+ return ret;
+ }
+
+-static unsigned char *HKDF_Extract(const EVP_MD *evp_md,
+- const unsigned char *salt, size_t salt_len,
+- const unsigned char *key, size_t key_len,
+- unsigned char *prk, size_t *prk_len)
++static int HKDF_Extract(const EVP_MD *evp_md,
++ const unsigned char *salt, size_t salt_len,
++ const unsigned char *key, size_t key_len,
++ unsigned char *prk, size_t prk_len)
+ {
+- unsigned int tmp_len;
+-
+- if (!HMAC(evp_md, salt, salt_len, key, key_len, prk, &tmp_len))
+- return NULL;
+-
+- *prk_len = tmp_len;
+- return prk;
++ if (prk_len != (size_t)EVP_MD_size(evp_md)) {
++ KDFerr(KDF_F_HKDF_EXTRACT, KDF_R_WRONG_OUTPUT_BUFFER_SIZE);
++ return 0;
++ }
++ return HMAC(evp_md, salt, salt_len, key, key_len, prk, NULL) != NULL;
+ }
+
+-static unsigned char *HKDF_Expand(const EVP_MD *evp_md,
+- const unsigned char *prk, size_t prk_len,
+- const unsigned char *info, size_t info_len,
+- unsigned char *okm, size_t okm_len)
++static int HKDF_Expand(const EVP_MD *evp_md,
++ const unsigned char *prk, size_t prk_len,
++ const unsigned char *info, size_t info_len,
++ unsigned char *okm, size_t okm_len)
+ {
+ HMAC_CTX *hmac;
+- unsigned char *ret = NULL;
+-
++ int ret = 0;
+ unsigned int i;
+-
+ unsigned char prev[EVP_MAX_MD_SIZE];
+-
+ size_t done_len = 0, dig_len = EVP_MD_size(evp_md);
+-
+ size_t n = okm_len / dig_len;
++
+ if (okm_len % dig_len)
+ n++;
+
+ if (n > 255 || okm == NULL)
+- return NULL;
++ return 0;
+
+ if ((hmac = HMAC_CTX_new()) == NULL)
+- return NULL;
++ return 0;
+
+ if (!HMAC_Init_ex(hmac, prk, prk_len, evp_md, NULL))
+ goto err;
+@@ -343,7 +317,7 @@ static unsigned char *HKDF_Expand(const
+
+ done_len += copy_len;
+ }
+- ret = okm;
++ ret = 1;
+
+ err:
+ OPENSSL_cleanse(prev, sizeof(prev));
+diff -up openssl-1.1.1b/crypto/kdf/kdf_err.c.evp-kdf openssl-1.1.1b/crypto/kdf/kdf_err.c
+--- openssl-1.1.1b/crypto/kdf/kdf_err.c.evp-kdf 2019-02-26 15:15:30.000000000 +0100
++++ openssl-1.1.1b/crypto/kdf/kdf_err.c 2019-02-28 13:05:05.654521419 +0100
+@@ -1,6 +1,6 @@
+ /*
+ * Generated by util/mkerr.pl DO NOT EDIT
+- * Copyright 1995-2018 The OpenSSL Project Authors. All Rights Reserved.
++ * Copyright 1995-2019 The OpenSSL Project Authors. All Rights Reserved.
+ *
+ * Licensed under the OpenSSL license (the "License"). You may not use
+ * this file except in compliance with the License. You can obtain a copy
+@@ -14,6 +14,29 @@
+ #ifndef OPENSSL_NO_ERR
+
+ static const ERR_STRING_DATA KDF_str_functs[] = {
++ {ERR_PACK(ERR_LIB_KDF, KDF_F_HKDF_EXTRACT, 0), "HKDF_Extract"},
++ {ERR_PACK(ERR_LIB_KDF, KDF_F_KDF_HKDF_DERIVE, 0), "kdf_hkdf_derive"},
++ {ERR_PACK(ERR_LIB_KDF, KDF_F_KDF_HKDF_NEW, 0), "kdf_hkdf_new"},
++ {ERR_PACK(ERR_LIB_KDF, KDF_F_KDF_HKDF_SIZE, 0), "kdf_hkdf_size"},
++ {ERR_PACK(ERR_LIB_KDF, KDF_F_KDF_MD2CTRL, 0), "kdf_md2ctrl"},
++ {ERR_PACK(ERR_LIB_KDF, KDF_F_KDF_PBKDF2_CTRL_STR, 0),
++ "kdf_pbkdf2_ctrl_str"},
++ {ERR_PACK(ERR_LIB_KDF, KDF_F_KDF_PBKDF2_DERIVE, 0), "kdf_pbkdf2_derive"},
++ {ERR_PACK(ERR_LIB_KDF, KDF_F_KDF_PBKDF2_NEW, 0), "kdf_pbkdf2_new"},
++ {ERR_PACK(ERR_LIB_KDF, KDF_F_KDF_SCRYPT_CTRL_STR, 0),
++ "kdf_scrypt_ctrl_str"},
++ {ERR_PACK(ERR_LIB_KDF, KDF_F_KDF_SCRYPT_CTRL_UINT32, 0),
++ "kdf_scrypt_ctrl_uint32"},
++ {ERR_PACK(ERR_LIB_KDF, KDF_F_KDF_SCRYPT_CTRL_UINT64, 0),
++ "kdf_scrypt_ctrl_uint64"},
++ {ERR_PACK(ERR_LIB_KDF, KDF_F_KDF_SCRYPT_DERIVE, 0), "kdf_scrypt_derive"},
++ {ERR_PACK(ERR_LIB_KDF, KDF_F_KDF_SCRYPT_NEW, 0), "kdf_scrypt_new"},
++ {ERR_PACK(ERR_LIB_KDF, KDF_F_KDF_TLS1_PRF_CTRL_STR, 0),
++ "kdf_tls1_prf_ctrl_str"},
++ {ERR_PACK(ERR_LIB_KDF, KDF_F_KDF_TLS1_PRF_DERIVE, 0),
++ "kdf_tls1_prf_derive"},
++ {ERR_PACK(ERR_LIB_KDF, KDF_F_KDF_TLS1_PRF_NEW, 0), "kdf_tls1_prf_new"},
++ {ERR_PACK(ERR_LIB_KDF, KDF_F_PBKDF2_SET_MEMBUF, 0), "pbkdf2_set_membuf"},
+ {ERR_PACK(ERR_LIB_KDF, KDF_F_PKEY_HKDF_CTRL_STR, 0), "pkey_hkdf_ctrl_str"},
+ {ERR_PACK(ERR_LIB_KDF, KDF_F_PKEY_HKDF_DERIVE, 0), "pkey_hkdf_derive"},
+ {ERR_PACK(ERR_LIB_KDF, KDF_F_PKEY_HKDF_INIT, 0), "pkey_hkdf_init"},
+@@ -30,6 +53,7 @@ static const ERR_STRING_DATA KDF_str_fun
+ {ERR_PACK(ERR_LIB_KDF, KDF_F_PKEY_TLS1_PRF_DERIVE, 0),
+ "pkey_tls1_prf_derive"},
+ {ERR_PACK(ERR_LIB_KDF, KDF_F_PKEY_TLS1_PRF_INIT, 0), "pkey_tls1_prf_init"},
++ {ERR_PACK(ERR_LIB_KDF, KDF_F_SCRYPT_SET_MEMBUF, 0), "scrypt_set_membuf"},
+ {ERR_PACK(ERR_LIB_KDF, KDF_F_TLS1_PRF_ALG, 0), "tls1_prf_alg"},
+ {0, NULL}
+ };
+@@ -50,6 +74,8 @@ static const ERR_STRING_DATA KDF_str_rea
+ "unknown parameter type"},
+ {ERR_PACK(ERR_LIB_KDF, 0, KDF_R_VALUE_ERROR), "value error"},
+ {ERR_PACK(ERR_LIB_KDF, 0, KDF_R_VALUE_MISSING), "value missing"},
++ {ERR_PACK(ERR_LIB_KDF, 0, KDF_R_WRONG_OUTPUT_BUFFER_SIZE),
++ "wrong output buffer size"},
+ {0, NULL}
+ };
+
+diff -up openssl-1.1.1b/crypto/kdf/kdf_local.h.evp-kdf openssl-1.1.1b/crypto/kdf/kdf_local.h
+--- openssl-1.1.1b/crypto/kdf/kdf_local.h.evp-kdf 2019-02-28 13:05:05.654521419 +0100
++++ openssl-1.1.1b/crypto/kdf/kdf_local.h 2019-02-28 13:05:05.654521419 +0100
+@@ -0,0 +1,22 @@
++/*
++ * Copyright 2018 The OpenSSL Project Authors. All Rights Reserved.
++ * Copyright (c) 2018, Oracle and/or its affiliates. All rights reserved.
++ *
++ * Licensed under the Apache License 2.0 (the "License"). You may not use
++ * this file except in compliance with the License. You can obtain a copy
++ * in the file LICENSE in the source distribution or at
++ * https://www.openssl.org/source/license.html
++ */
++
++int call_ctrl(int (*ctrl)(EVP_KDF_IMPL *impl, int cmd, va_list args),
++ EVP_KDF_IMPL *impl, int cmd, ...);
++int kdf_str2ctrl(EVP_KDF_IMPL *impl,
++ int (*ctrl)(EVP_KDF_IMPL *impl, int cmd, va_list args),
++ int cmd, const char *str);
++int kdf_hex2ctrl(EVP_KDF_IMPL *impl,
++ int (*ctrl)(EVP_KDF_IMPL *impl, int cmd, va_list args),
++ int cmd, const char *hex);
++int kdf_md2ctrl(EVP_KDF_IMPL *impl,
++ int (*ctrl)(EVP_KDF_IMPL *impl, int cmd, va_list args),
++ int cmd, const char *md_name);
++
+diff -up openssl-1.1.1b/crypto/kdf/kdf_util.c.evp-kdf openssl-1.1.1b/crypto/kdf/kdf_util.c
+--- openssl-1.1.1b/crypto/kdf/kdf_util.c.evp-kdf 2019-02-28 13:05:05.654521419 +0100
++++ openssl-1.1.1b/crypto/kdf/kdf_util.c 2019-02-28 13:05:05.654521419 +0100
+@@ -0,0 +1,73 @@
++/*
++ * Copyright 2018 The OpenSSL Project Authors. All Rights Reserved.
++ * Copyright (c) 2018, Oracle and/or its affiliates. All rights reserved.
++ *
++ * Licensed under the Apache License 2.0 (the "License"). You may not use
++ * this file except in compliance with the License. You can obtain a copy
++ * in the file LICENSE in the source distribution or at
++ * https://www.openssl.org/source/license.html
++ */
++
++#include <string.h>
++#include <stdarg.h>
++#include <openssl/kdf.h>
++#include <openssl/evp.h>
++#include "internal/cryptlib.h"
++#include "internal/evp_int.h"
++#include "internal/numbers.h"
++#include "kdf_local.h"
++
++int call_ctrl(int (*ctrl)(EVP_KDF_IMPL *impl, int cmd, va_list args),
++ EVP_KDF_IMPL *impl, int cmd, ...)
++{
++ int ret;
++ va_list args;
++
++ va_start(args, cmd);
++ ret = ctrl(impl, cmd, args);
++ va_end(args);
++
++ return ret;
++}
++
++/* Utility functions to send a string or hex string to a ctrl */
++
++int kdf_str2ctrl(EVP_KDF_IMPL *impl,
++ int (*ctrl)(EVP_KDF_IMPL *impl, int cmd, va_list args),
++ int cmd, const char *str)
++{
++ return call_ctrl(ctrl, impl, cmd, (const unsigned char *)str, strlen(str));
++}
++
++int kdf_hex2ctrl(EVP_KDF_IMPL *impl,
++ int (*ctrl)(EVP_KDF_IMPL *impl, int cmd, va_list args),
++ int cmd, const char *hex)
++{
++ unsigned char *bin;
++ long binlen;
++ int ret = -1;
++
++ bin = OPENSSL_hexstr2buf(hex, &binlen);
++ if (bin == NULL)
++ return 0;
++
++ if (binlen <= INT_MAX)
++ ret = call_ctrl(ctrl, impl, cmd, bin, (size_t)binlen);
++ OPENSSL_free(bin);
++ return ret;
++}
++
++/* Pass a message digest to a ctrl */
++int kdf_md2ctrl(EVP_KDF_IMPL *impl,
++ int (*ctrl)(EVP_KDF_IMPL *impl, int cmd, va_list args),
++ int cmd, const char *md_name)
++{
++ const EVP_MD *md;
++
++ if (md_name == NULL || (md = EVP_get_digestbyname(md_name)) == NULL) {
++ KDFerr(KDF_F_KDF_MD2CTRL, KDF_R_INVALID_DIGEST);
++ return 0;
++ }
++ return call_ctrl(ctrl, impl, cmd, md);
++}
++
+diff -up openssl-1.1.1b/crypto/kdf/pbkdf2.c.evp-kdf openssl-1.1.1b/crypto/kdf/pbkdf2.c
+--- openssl-1.1.1b/crypto/kdf/pbkdf2.c.evp-kdf 2019-02-28 13:05:05.654521419 +0100
++++ openssl-1.1.1b/crypto/kdf/pbkdf2.c 2019-02-28 13:05:05.654521419 +0100
+@@ -0,0 +1,264 @@
++/*
++ * Copyright 2018 The OpenSSL Project Authors. All Rights Reserved.
++ *
++ * Licensed under the Apache License 2.0 (the "License"). You may not use
++ * this file except in compliance with the License. You can obtain a copy
++ * in the file LICENSE in the source distribution or at
++ * https://www.openssl.org/source/license.html
++ */
++
++#include <stdlib.h>
++#include <stdarg.h>
++#include <string.h>
++#include <openssl/hmac.h>
++#include <openssl/evp.h>
++#include <openssl/kdf.h>
++#include "internal/cryptlib.h"
++#include "internal/evp_int.h"
++#include "kdf_local.h"
++
++static void kdf_pbkdf2_reset(EVP_KDF_IMPL *impl);
++static void kdf_pbkdf2_init(EVP_KDF_IMPL *impl);
++static int pkcs5_pbkdf2_alg(const char *pass, size_t passlen,
++ const unsigned char *salt, int saltlen, int iter,
++ const EVP_MD *digest, unsigned char *key,
++ size_t keylen);
++
++struct evp_kdf_impl_st {
++ unsigned char *pass;
++ size_t pass_len;
++ unsigned char *salt;
++ size_t salt_len;
++ int iter;
++ const EVP_MD *md;
++};
++
++static EVP_KDF_IMPL *kdf_pbkdf2_new(void)
++{
++ EVP_KDF_IMPL *impl;
++
++ impl = OPENSSL_zalloc(sizeof(*impl));
++ if (impl == NULL) {
++ KDFerr(KDF_F_KDF_PBKDF2_NEW, ERR_R_MALLOC_FAILURE);
++ return NULL;
++ }
++ kdf_pbkdf2_init(impl);
++ return impl;
++}
++
++static void kdf_pbkdf2_free(EVP_KDF_IMPL *impl)
++{
++ kdf_pbkdf2_reset(impl);
++ OPENSSL_free(impl);
++}
++
++static void kdf_pbkdf2_reset(EVP_KDF_IMPL *impl)
++{
++ OPENSSL_free(impl->salt);
++ OPENSSL_clear_free(impl->pass, impl->pass_len);
++ memset(impl, 0, sizeof(*impl));
++ kdf_pbkdf2_init(impl);
++}
++
++static void kdf_pbkdf2_init(EVP_KDF_IMPL *impl)
++{
++ impl->iter = PKCS5_DEFAULT_ITER;
++ impl->md = EVP_sha1();
++}
++
++static int pbkdf2_set_membuf(unsigned char **buffer, size_t *buflen,
++ const unsigned char *new_buffer,
++ size_t new_buflen)
++{
++ if (new_buffer == NULL)
++ return 1;
++
++ OPENSSL_clear_free(*buffer, *buflen);
++
++ if (new_buflen > 0) {
++ *buffer = OPENSSL_memdup(new_buffer, new_buflen);
++ } else {
++ *buffer = OPENSSL_malloc(1);
++ }
++ if (*buffer == NULL) {
++ KDFerr(KDF_F_PBKDF2_SET_MEMBUF, ERR_R_MALLOC_FAILURE);
++ return 0;
++ }
++
++ *buflen = new_buflen;
++ return 1;
++}
++
++static int kdf_pbkdf2_ctrl(EVP_KDF_IMPL *impl, int cmd, va_list args)
++{
++ int iter;
++ const unsigned char *p;
++ size_t len;
++ const EVP_MD *md;
++
++ switch (cmd) {
++ case EVP_KDF_CTRL_SET_PASS:
++ p = va_arg(args, const unsigned char *);
++ len = va_arg(args, size_t);
++ return pbkdf2_set_membuf(&impl->pass, &impl->pass_len, p, len);
++
++ case EVP_KDF_CTRL_SET_SALT:
++ p = va_arg(args, const unsigned char *);
++ len = va_arg(args, size_t);
++ return pbkdf2_set_membuf(&impl->salt, &impl->salt_len, p, len);
++
++ case EVP_KDF_CTRL_SET_ITER:
++ iter = va_arg(args, int);
++ if (iter < 1)
++ return 0;
++
++ impl->iter = iter;
++ return 1;
++
++ case EVP_KDF_CTRL_SET_MD:
++ md = va_arg(args, const EVP_MD *);
++ if (md == NULL)
++ return 0;
++
++ impl->md = md;
++ return 1;
++
++ default:
++ return -2;
++ }
++}
++
++static int kdf_pbkdf2_ctrl_str(EVP_KDF_IMPL *impl, const char *type,
++ const char *value)
++{
++ if (value == NULL) {
++ KDFerr(KDF_F_KDF_PBKDF2_CTRL_STR, KDF_R_VALUE_MISSING);
++ return 0;
++ }
++
++ if (strcmp(type, "pass") == 0)
++ return kdf_str2ctrl(impl, kdf_pbkdf2_ctrl, EVP_KDF_CTRL_SET_PASS,
++ value);
++
++ if (strcmp(type, "hexpass") == 0)
++ return kdf_hex2ctrl(impl, kdf_pbkdf2_ctrl, EVP_KDF_CTRL_SET_PASS,
++ value);
++
++ if (strcmp(type, "salt") == 0)
++ return kdf_str2ctrl(impl, kdf_pbkdf2_ctrl, EVP_KDF_CTRL_SET_SALT,
++ value);
++
++ if (strcmp(type, "hexsalt") == 0)
++ return kdf_hex2ctrl(impl, kdf_pbkdf2_ctrl, EVP_KDF_CTRL_SET_SALT,
++ value);
++
++ if (strcmp(type, "iter") == 0)
++ return call_ctrl(kdf_pbkdf2_ctrl, impl, EVP_KDF_CTRL_SET_ITER,
++ atoi(value));
++
++ if (strcmp(type, "digest") == 0)
++ return kdf_md2ctrl(impl, kdf_pbkdf2_ctrl, EVP_KDF_CTRL_SET_MD, value);
++
++ return -2;
++}
++
++static int kdf_pbkdf2_derive(EVP_KDF_IMPL *impl, unsigned char *key,
++ size_t keylen)
++{
++ if (impl->pass == NULL) {
++ KDFerr(KDF_F_KDF_PBKDF2_DERIVE, KDF_R_MISSING_PASS);
++ return 0;
++ }
++
++ if (impl->salt == NULL) {
++ KDFerr(KDF_F_KDF_PBKDF2_DERIVE, KDF_R_MISSING_SALT);
++ return 0;
++ }
++
++ return pkcs5_pbkdf2_alg((char *)impl->pass, impl->pass_len,
++ impl->salt, impl->salt_len, impl->iter,
++ impl->md, key, keylen);
++}
++
++const EVP_KDF_METHOD pbkdf2_kdf_meth = {
++ EVP_KDF_PBKDF2,
++ kdf_pbkdf2_new,
++ kdf_pbkdf2_free,
++ kdf_pbkdf2_reset,
++ kdf_pbkdf2_ctrl,
++ kdf_pbkdf2_ctrl_str,
++ NULL,
++ kdf_pbkdf2_derive
++};
++
++/*
++ * This is an implementation of PKCS#5 v2.0 password based encryption key
++ * derivation function PBKDF2. SHA1 version verified against test vectors
++ * posted by Peter Gutmann to the PKCS-TNG mailing list.
++ */
++
++static int pkcs5_pbkdf2_alg(const char *pass, size_t passlen,
++ const unsigned char *salt, int saltlen, int iter,
++ const EVP_MD *digest, unsigned char *key,
++ size_t keylen)
++{
++ int ret = 0;
++ unsigned char digtmp[EVP_MAX_MD_SIZE], *p, itmp[4];
++ int cplen, j, k, tkeylen, mdlen;
++ unsigned long i = 1;
++ HMAC_CTX *hctx_tpl = NULL, *hctx = NULL;
++
++ mdlen = EVP_MD_size(digest);
++ if (mdlen < 0)
++ return 0;
++
++ hctx_tpl = HMAC_CTX_new();
++ if (hctx_tpl == NULL)
++ return 0;
++ p = key;
++ tkeylen = keylen;
++ if (!HMAC_Init_ex(hctx_tpl, pass, passlen, digest, NULL))
++ goto err;
++ hctx = HMAC_CTX_new();
++ if (hctx == NULL)
++ goto err;
++ while (tkeylen) {
++ if (tkeylen > mdlen)
++ cplen = mdlen;
++ else
++ cplen = tkeylen;
++ /*
++ * We are unlikely to ever use more than 256 blocks (5120 bits!) but
++ * just in case...
++ */
++ itmp[0] = (unsigned char)((i >> 24) & 0xff);
++ itmp[1] = (unsigned char)((i >> 16) & 0xff);
++ itmp[2] = (unsigned char)((i >> 8) & 0xff);
++ itmp[3] = (unsigned char)(i & 0xff);
++ if (!HMAC_CTX_copy(hctx, hctx_tpl))
++ goto err;
++ if (!HMAC_Update(hctx, salt, saltlen)
++ || !HMAC_Update(hctx, itmp, 4)
++ || !HMAC_Final(hctx, digtmp, NULL))
++ goto err;
++ memcpy(p, digtmp, cplen);
++ for (j = 1; j < iter; j++) {
++ if (!HMAC_CTX_copy(hctx, hctx_tpl))
++ goto err;
++ if (!HMAC_Update(hctx, digtmp, mdlen)
++ || !HMAC_Final(hctx, digtmp, NULL))
++ goto err;
++ for (k = 0; k < cplen; k++)
++ p[k] ^= digtmp[k];
++ }
++ tkeylen -= cplen;
++ i++;
++ p += cplen;
++ }
++ ret = 1;
++
++err:
++ HMAC_CTX_free(hctx);
++ HMAC_CTX_free(hctx_tpl);
++ return ret;
++}
+diff -up openssl-1.1.1b/crypto/kdf/scrypt.c.evp-kdf openssl-1.1.1b/crypto/kdf/scrypt.c
+--- openssl-1.1.1b/crypto/kdf/scrypt.c.evp-kdf 2019-02-26 15:15:30.000000000 +0100
++++ openssl-1.1.1b/crypto/kdf/scrypt.c 2019-02-28 13:05:05.655521400 +0100
+@@ -8,25 +8,34 @@
+ */
+
+ #include <stdlib.h>
++#include <stdarg.h>
+ #include <string.h>
+-#include <openssl/hmac.h>
+-#include <openssl/kdf.h>
+ #include <openssl/evp.h>
+-#include "internal/cryptlib.h"
++#include <openssl/kdf.h>
++#include <openssl/err.h>
+ #include "internal/evp_int.h"
++#include "internal/numbers.h"
++#include "kdf_local.h"
+
+ #ifndef OPENSSL_NO_SCRYPT
+
++static void kdf_scrypt_reset(EVP_KDF_IMPL *impl);
++static void kdf_scrypt_init(EVP_KDF_IMPL *impl);
+ static int atou64(const char *nptr, uint64_t *result);
++static int scrypt_alg(const char *pass, size_t passlen,
++ const unsigned char *salt, size_t saltlen,
++ uint64_t N, uint64_t r, uint64_t p, uint64_t maxmem,
++ unsigned char *key, size_t keylen);
+
+-typedef struct {
++struct evp_kdf_impl_st {
+ unsigned char *pass;
+ size_t pass_len;
+ unsigned char *salt;
+ size_t salt_len;
+- uint64_t N, r, p;
++ uint64_t N;
++ uint32_t r, p;
+ uint64_t maxmem_bytes;
+-} SCRYPT_PKEY_CTX;
++};
+
+ /* Custom uint64_t parser since we do not have strtoull */
+ static int atou64(const char *nptr, uint64_t *result)
+@@ -53,51 +62,53 @@ static int atou64(const char *nptr, uint
+ return 1;
+ }
+
+-static int pkey_scrypt_init(EVP_PKEY_CTX *ctx)
++static EVP_KDF_IMPL *kdf_scrypt_new(void)
+ {
+- SCRYPT_PKEY_CTX *kctx;
++ EVP_KDF_IMPL *impl;
+
+- kctx = OPENSSL_zalloc(sizeof(*kctx));
+- if (kctx == NULL) {
+- KDFerr(KDF_F_PKEY_SCRYPT_INIT, ERR_R_MALLOC_FAILURE);
+- return 0;
++ impl = OPENSSL_zalloc(sizeof(*impl));
++ if (impl == NULL) {
++ KDFerr(KDF_F_KDF_SCRYPT_NEW, ERR_R_MALLOC_FAILURE);
++ return NULL;
+ }
++ kdf_scrypt_init(impl);
++ return impl;
++}
+
+- /* Default values are the most conservative recommendation given in the
+- * original paper of C. Percival. Derivation uses roughly 1 GiB of memory
+- * for this parameter choice (approx. 128 * r * (N + p) bytes).
+- */
+- kctx->N = 1 << 20;
+- kctx->r = 8;
+- kctx->p = 1;
+- kctx->maxmem_bytes = 1025 * 1024 * 1024;
+-
+- ctx->data = kctx;
+-
+- return 1;
++static void kdf_scrypt_free(EVP_KDF_IMPL *impl)
++{
++ kdf_scrypt_reset(impl);
++ OPENSSL_free(impl);
+ }
+
+-static void pkey_scrypt_cleanup(EVP_PKEY_CTX *ctx)
++static void kdf_scrypt_reset(EVP_KDF_IMPL *impl)
+ {
+- SCRYPT_PKEY_CTX *kctx = ctx->data;
++ OPENSSL_free(impl->salt);
++ OPENSSL_clear_free(impl->pass, impl->pass_len);
++ memset(impl, 0, sizeof(*impl));
++ kdf_scrypt_init(impl);
++}
+
+- OPENSSL_clear_free(kctx->salt, kctx->salt_len);
+- OPENSSL_clear_free(kctx->pass, kctx->pass_len);
+- OPENSSL_free(kctx);
++static void kdf_scrypt_init(EVP_KDF_IMPL *impl)
++{
++ /* Default values are the most conservative recommendation given in the
++ * original paper of C. Percival. Derivation uses roughly 1 GiB of memory
++ * for this parameter choice (approx. 128 * r * N * p bytes).
++ */
++ impl->N = 1 << 20;
++ impl->r = 8;
++ impl->p = 1;
++ impl->maxmem_bytes = 1025 * 1024 * 1024;
+ }
+
+-static int pkey_scrypt_set_membuf(unsigned char **buffer, size_t *buflen,
+- const unsigned char *new_buffer,
+- const int new_buflen)
++static int scrypt_set_membuf(unsigned char **buffer, size_t *buflen,
++ const unsigned char *new_buffer,
++ size_t new_buflen)
+ {
+ if (new_buffer == NULL)
+ return 1;
+
+- if (new_buflen < 0)
+- return 0;
+-
+- if (*buffer != NULL)
+- OPENSSL_clear_free(*buffer, *buflen);
++ OPENSSL_clear_free(*buffer, *buflen);
+
+ if (new_buflen > 0) {
+ *buffer = OPENSSL_memdup(new_buffer, new_buflen);
+@@ -105,7 +116,7 @@ static int pkey_scrypt_set_membuf(unsign
+ *buffer = OPENSSL_malloc(1);
+ }
+ if (*buffer == NULL) {
+- KDFerr(KDF_F_PKEY_SCRYPT_SET_MEMBUF, ERR_R_MALLOC_FAILURE);
++ KDFerr(KDF_F_SCRYPT_SET_MEMBUF, ERR_R_MALLOC_FAILURE);
+ return 0;
+ }
+
+@@ -118,149 +129,378 @@ static int is_power_of_two(uint64_t valu
+ return (value != 0) && ((value & (value - 1)) == 0);
+ }
+
+-static int pkey_scrypt_ctrl(EVP_PKEY_CTX *ctx, int type, int p1, void *p2)
++static int kdf_scrypt_ctrl(EVP_KDF_IMPL *impl, int cmd, va_list args)
+ {
+- SCRYPT_PKEY_CTX *kctx = ctx->data;
+ uint64_t u64_value;
++ uint32_t value;
++ const unsigned char *p;
++ size_t len;
++
++ switch (cmd) {
++ case EVP_KDF_CTRL_SET_PASS:
++ p = va_arg(args, const unsigned char *);
++ len = va_arg(args, size_t);
++ return scrypt_set_membuf(&impl->pass, &impl->pass_len, p, len);
++
++ case EVP_KDF_CTRL_SET_SALT:
++ p = va_arg(args, const unsigned char *);
++ len = va_arg(args, size_t);
++ return scrypt_set_membuf(&impl->salt, &impl->salt_len, p, len);
+
+- switch (type) {
+- case EVP_PKEY_CTRL_PASS:
+- return pkey_scrypt_set_membuf(&kctx->pass, &kctx->pass_len, p2, p1);
+-
+- case EVP_PKEY_CTRL_SCRYPT_SALT:
+- return pkey_scrypt_set_membuf(&kctx->salt, &kctx->salt_len, p2, p1);
+-
+- case EVP_PKEY_CTRL_SCRYPT_N:
+- u64_value = *((uint64_t *)p2);
++ case EVP_KDF_CTRL_SET_SCRYPT_N:
++ u64_value = va_arg(args, uint64_t);
+ if ((u64_value <= 1) || !is_power_of_two(u64_value))
+ return 0;
+- kctx->N = u64_value;
++
++ impl->N = u64_value;
+ return 1;
+
+- case EVP_PKEY_CTRL_SCRYPT_R:
+- u64_value = *((uint64_t *)p2);
+- if (u64_value < 1)
++ case EVP_KDF_CTRL_SET_SCRYPT_R:
++ value = va_arg(args, uint32_t);
++ if (value < 1)
+ return 0;
+- kctx->r = u64_value;
++
++ impl->r = value;
+ return 1;
+
+- case EVP_PKEY_CTRL_SCRYPT_P:
+- u64_value = *((uint64_t *)p2);
+- if (u64_value < 1)
++ case EVP_KDF_CTRL_SET_SCRYPT_P:
++ value = va_arg(args, uint32_t);
++ if (value < 1)
+ return 0;
+- kctx->p = u64_value;
++
++ impl->p = value;
+ return 1;
+
+- case EVP_PKEY_CTRL_SCRYPT_MAXMEM_BYTES:
+- u64_value = *((uint64_t *)p2);
++ case EVP_KDF_CTRL_SET_MAXMEM_BYTES:
++ u64_value = va_arg(args, uint64_t);
+ if (u64_value < 1)
+ return 0;
+- kctx->maxmem_bytes = u64_value;
++
++ impl->maxmem_bytes = u64_value;
+ return 1;
+
+ default:
+ return -2;
++ }
++}
+
++static int kdf_scrypt_ctrl_uint32(EVP_KDF_IMPL *impl, int cmd,
++ const char *value)
++{
++ int int_value = atoi(value);
++
++ if (int_value < 0 || (uint64_t)int_value > UINT32_MAX) {
++ KDFerr(KDF_F_KDF_SCRYPT_CTRL_UINT32, KDF_R_VALUE_ERROR);
++ return 0;
+ }
++ return call_ctrl(kdf_scrypt_ctrl, impl, cmd, (uint32_t)int_value);
+ }
+
+-static int pkey_scrypt_ctrl_uint64(EVP_PKEY_CTX *ctx, int type,
+- const char *value)
++static int kdf_scrypt_ctrl_uint64(EVP_KDF_IMPL *impl, int cmd,
++ const char *value)
+ {
+- uint64_t int_value;
++ uint64_t u64_value;
+
+- if (!atou64(value, &int_value)) {
+- KDFerr(KDF_F_PKEY_SCRYPT_CTRL_UINT64, KDF_R_VALUE_ERROR);
++ if (!atou64(value, &u64_value)) {
++ KDFerr(KDF_F_KDF_SCRYPT_CTRL_UINT64, KDF_R_VALUE_ERROR);
+ return 0;
+ }
+- return pkey_scrypt_ctrl(ctx, type, 0, &int_value);
++ return call_ctrl(kdf_scrypt_ctrl, impl, cmd, u64_value);
+ }
+
+-static int pkey_scrypt_ctrl_str(EVP_PKEY_CTX *ctx, const char *type,
+- const char *value)
++static int kdf_scrypt_ctrl_str(EVP_KDF_IMPL *impl, const char *type,
++ const char *value)
+ {
+ if (value == NULL) {
+- KDFerr(KDF_F_PKEY_SCRYPT_CTRL_STR, KDF_R_VALUE_MISSING);
++ KDFerr(KDF_F_KDF_SCRYPT_CTRL_STR, KDF_R_VALUE_MISSING);
+ return 0;
+ }
+
+ if (strcmp(type, "pass") == 0)
+- return EVP_PKEY_CTX_str2ctrl(ctx, EVP_PKEY_CTRL_PASS, value);
++ return kdf_str2ctrl(impl, kdf_scrypt_ctrl, EVP_KDF_CTRL_SET_PASS,
++ value);
+
+ if (strcmp(type, "hexpass") == 0)
+- return EVP_PKEY_CTX_hex2ctrl(ctx, EVP_PKEY_CTRL_PASS, value);
++ return kdf_hex2ctrl(impl, kdf_scrypt_ctrl, EVP_KDF_CTRL_SET_PASS,
++ value);
+
+ if (strcmp(type, "salt") == 0)
+- return EVP_PKEY_CTX_str2ctrl(ctx, EVP_PKEY_CTRL_SCRYPT_SALT, value);
++ return kdf_str2ctrl(impl, kdf_scrypt_ctrl, EVP_KDF_CTRL_SET_SALT,
++ value);
+
+ if (strcmp(type, "hexsalt") == 0)
+- return EVP_PKEY_CTX_hex2ctrl(ctx, EVP_PKEY_CTRL_SCRYPT_SALT, value);
++ return kdf_hex2ctrl(impl, kdf_scrypt_ctrl, EVP_KDF_CTRL_SET_SALT,
++ value);
+
+ if (strcmp(type, "N") == 0)
+- return pkey_scrypt_ctrl_uint64(ctx, EVP_PKEY_CTRL_SCRYPT_N, value);
++ return kdf_scrypt_ctrl_uint64(impl, EVP_KDF_CTRL_SET_SCRYPT_N, value);
+
+ if (strcmp(type, "r") == 0)
+- return pkey_scrypt_ctrl_uint64(ctx, EVP_PKEY_CTRL_SCRYPT_R, value);
++ return kdf_scrypt_ctrl_uint32(impl, EVP_KDF_CTRL_SET_SCRYPT_R, value);
+
+ if (strcmp(type, "p") == 0)
+- return pkey_scrypt_ctrl_uint64(ctx, EVP_PKEY_CTRL_SCRYPT_P, value);
++ return kdf_scrypt_ctrl_uint32(impl, EVP_KDF_CTRL_SET_SCRYPT_P, value);
+
+ if (strcmp(type, "maxmem_bytes") == 0)
+- return pkey_scrypt_ctrl_uint64(ctx, EVP_PKEY_CTRL_SCRYPT_MAXMEM_BYTES,
+- value);
++ return kdf_scrypt_ctrl_uint64(impl, EVP_KDF_CTRL_SET_MAXMEM_BYTES,
++ value);
+
+- KDFerr(KDF_F_PKEY_SCRYPT_CTRL_STR, KDF_R_UNKNOWN_PARAMETER_TYPE);
+ return -2;
+ }
+
+-static int pkey_scrypt_derive(EVP_PKEY_CTX *ctx, unsigned char *key,
+- size_t *keylen)
++static int kdf_scrypt_derive(EVP_KDF_IMPL *impl, unsigned char *key,
++ size_t keylen)
+ {
+- SCRYPT_PKEY_CTX *kctx = ctx->data;
+-
+- if (kctx->pass == NULL) {
+- KDFerr(KDF_F_PKEY_SCRYPT_DERIVE, KDF_R_MISSING_PASS);
++ if (impl->pass == NULL) {
++ KDFerr(KDF_F_KDF_SCRYPT_DERIVE, KDF_R_MISSING_PASS);
+ return 0;
+ }
+
+- if (kctx->salt == NULL) {
+- KDFerr(KDF_F_PKEY_SCRYPT_DERIVE, KDF_R_MISSING_SALT);
++ if (impl->salt == NULL) {
++ KDFerr(KDF_F_KDF_SCRYPT_DERIVE, KDF_R_MISSING_SALT);
+ return 0;
+ }
+
+- return EVP_PBE_scrypt((char *)kctx->pass, kctx->pass_len, kctx->salt,
+- kctx->salt_len, kctx->N, kctx->r, kctx->p,
+- kctx->maxmem_bytes, key, *keylen);
++ return scrypt_alg((char *)impl->pass, impl->pass_len, impl->salt,
++ impl->salt_len, impl->N, impl->r, impl->p,
++ impl->maxmem_bytes, key, keylen);
+ }
+
+-const EVP_PKEY_METHOD scrypt_pkey_meth = {
+- EVP_PKEY_SCRYPT,
+- 0,
+- pkey_scrypt_init,
+- 0,
+- pkey_scrypt_cleanup,
++const EVP_KDF_METHOD scrypt_kdf_meth = {
++ EVP_KDF_SCRYPT,
++ kdf_scrypt_new,
++ kdf_scrypt_free,
++ kdf_scrypt_reset,
++ kdf_scrypt_ctrl,
++ kdf_scrypt_ctrl_str,
++ NULL,
++ kdf_scrypt_derive
++};
+
+- 0, 0,
+- 0, 0,
++#define R(a,b) (((a) << (b)) | ((a) >> (32 - (b))))
++static void salsa208_word_specification(uint32_t inout[16])
++{
++ int i;
++ uint32_t x[16];
+
+- 0,
+- 0,
++ memcpy(x, inout, sizeof(x));
++ for (i = 8; i > 0; i -= 2) {
++ x[4] ^= R(x[0] + x[12], 7);
++ x[8] ^= R(x[4] + x[0], 9);
++ x[12] ^= R(x[8] + x[4], 13);
++ x[0] ^= R(x[12] + x[8], 18);
++ x[9] ^= R(x[5] + x[1], 7);
++ x[13] ^= R(x[9] + x[5], 9);
++ x[1] ^= R(x[13] + x[9], 13);
++ x[5] ^= R(x[1] + x[13], 18);
++ x[14] ^= R(x[10] + x[6], 7);
++ x[2] ^= R(x[14] + x[10], 9);
++ x[6] ^= R(x[2] + x[14], 13);
++ x[10] ^= R(x[6] + x[2], 18);
++ x[3] ^= R(x[15] + x[11], 7);
++ x[7] ^= R(x[3] + x[15], 9);
++ x[11] ^= R(x[7] + x[3], 13);
++ x[15] ^= R(x[11] + x[7], 18);
++ x[1] ^= R(x[0] + x[3], 7);
++ x[2] ^= R(x[1] + x[0], 9);
++ x[3] ^= R(x[2] + x[1], 13);
++ x[0] ^= R(x[3] + x[2], 18);
++ x[6] ^= R(x[5] + x[4], 7);
++ x[7] ^= R(x[6] + x[5], 9);
++ x[4] ^= R(x[7] + x[6], 13);
++ x[5] ^= R(x[4] + x[7], 18);
++ x[11] ^= R(x[10] + x[9], 7);
++ x[8] ^= R(x[11] + x[10], 9);
++ x[9] ^= R(x[8] + x[11], 13);
++ x[10] ^= R(x[9] + x[8], 18);
++ x[12] ^= R(x[15] + x[14], 7);
++ x[13] ^= R(x[12] + x[15], 9);
++ x[14] ^= R(x[13] + x[12], 13);
++ x[15] ^= R(x[14] + x[13], 18);
++ }
++ for (i = 0; i < 16; ++i)
++ inout[i] += x[i];
++ OPENSSL_cleanse(x, sizeof(x));
++}
+
+- 0,
+- 0,
++static void scryptBlockMix(uint32_t *B_, uint32_t *B, uint64_t r)
++{
++ uint64_t i, j;
++ uint32_t X[16], *pB;
+
+- 0, 0,
++ memcpy(X, B + (r * 2 - 1) * 16, sizeof(X));
++ pB = B;
++ for (i = 0; i < r * 2; i++) {
++ for (j = 0; j < 16; j++)
++ X[j] ^= *pB++;
++ salsa208_word_specification(X);
++ memcpy(B_ + (i / 2 + (i & 1) * r) * 16, X, sizeof(X));
++ }
++ OPENSSL_cleanse(X, sizeof(X));
++}
+
+- 0, 0, 0, 0,
++static void scryptROMix(unsigned char *B, uint64_t r, uint64_t N,
++ uint32_t *X, uint32_t *T, uint32_t *V)
++{
++ unsigned char *pB;
++ uint32_t *pV;
++ uint64_t i, k;
++
++ /* Convert from little endian input */
++ for (pV = V, i = 0, pB = B; i < 32 * r; i++, pV++) {
++ *pV = *pB++;
++ *pV |= *pB++ << 8;
++ *pV |= *pB++ << 16;
++ *pV |= (uint32_t)*pB++ << 24;
++ }
+
+- 0, 0,
++ for (i = 1; i < N; i++, pV += 32 * r)
++ scryptBlockMix(pV, pV - 32 * r, r);
+
+- 0, 0,
++ scryptBlockMix(X, V + (N - 1) * 32 * r, r);
+
+- 0,
+- pkey_scrypt_derive,
+- pkey_scrypt_ctrl,
+- pkey_scrypt_ctrl_str
+-};
++ for (i = 0; i < N; i++) {
++ uint32_t j;
++ j = X[16 * (2 * r - 1)] % N;
++ pV = V + 32 * r * j;
++ for (k = 0; k < 32 * r; k++)
++ T[k] = X[k] ^ *pV++;
++ scryptBlockMix(X, T, r);
++ }
++ /* Convert output to little endian */
++ for (i = 0, pB = B; i < 32 * r; i++) {
++ uint32_t xtmp = X[i];
++ *pB++ = xtmp & 0xff;
++ *pB++ = (xtmp >> 8) & 0xff;
++ *pB++ = (xtmp >> 16) & 0xff;
++ *pB++ = (xtmp >> 24) & 0xff;
++ }
++}
++
++#ifndef SIZE_MAX
++# define SIZE_MAX ((size_t)-1)
++#endif
++
++/*
++ * Maximum power of two that will fit in uint64_t: this should work on
++ * most (all?) platforms.
++ */
++
++#define LOG2_UINT64_MAX (sizeof(uint64_t) * 8 - 1)
++
++/*
++ * Maximum value of p * r:
++ * p <= ((2^32-1) * hLen) / MFLen =>
++ * p <= ((2^32-1) * 32) / (128 * r) =>
++ * p * r <= (2^30-1)
++ */
++
++#define SCRYPT_PR_MAX ((1 << 30) - 1)
++
++static int scrypt_alg(const char *pass, size_t passlen,
++ const unsigned char *salt, size_t saltlen,
++ uint64_t N, uint64_t r, uint64_t p, uint64_t maxmem,
++ unsigned char *key, size_t keylen)
++{
++ int rv = 0;
++ unsigned char *B;
++ uint32_t *X, *V, *T;
++ uint64_t i, Blen, Vlen;
++
++ /* Sanity check parameters */
++ /* initial check, r,p must be non zero, N >= 2 and a power of 2 */
++ if (r == 0 || p == 0 || N < 2 || (N & (N - 1)))
++ return 0;
++ /* Check p * r < SCRYPT_PR_MAX avoiding overflow */
++ if (p > SCRYPT_PR_MAX / r) {
++ EVPerr(EVP_F_SCRYPT_ALG, EVP_R_MEMORY_LIMIT_EXCEEDED);
++ return 0;
++ }
++
++ /*
++ * Need to check N: if 2^(128 * r / 8) overflows limit this is
++ * automatically satisfied since N <= UINT64_MAX.
++ */
++
++ if (16 * r <= LOG2_UINT64_MAX) {
++ if (N >= (((uint64_t)1) << (16 * r))) {
++ EVPerr(EVP_F_SCRYPT_ALG, EVP_R_MEMORY_LIMIT_EXCEEDED);
++ return 0;
++ }
++ }
++
++ /* Memory checks: check total allocated buffer size fits in uint64_t */
++
++ /*
++ * B size in section 5 step 1.S
++ * Note: we know p * 128 * r < UINT64_MAX because we already checked
++ * p * r < SCRYPT_PR_MAX
++ */
++ Blen = p * 128 * r;
++ /*
++ * Yet we pass it as integer to PKCS5_PBKDF2_HMAC... [This would
++ * have to be revised when/if PKCS5_PBKDF2_HMAC accepts size_t.]
++ */
++ if (Blen > INT_MAX) {
++ EVPerr(EVP_F_SCRYPT_ALG, EVP_R_MEMORY_LIMIT_EXCEEDED);
++ return 0;
++ }
++
++ /*
++ * Check 32 * r * (N + 2) * sizeof(uint32_t) fits in uint64_t
++ * This is combined size V, X and T (section 4)
++ */
++ i = UINT64_MAX / (32 * sizeof(uint32_t));
++ if (N + 2 > i / r) {
++ EVPerr(EVP_F_SCRYPT_ALG, EVP_R_MEMORY_LIMIT_EXCEEDED);
++ return 0;
++ }
++ Vlen = 32 * r * (N + 2) * sizeof(uint32_t);
++
++ /* check total allocated size fits in uint64_t */
++ if (Blen > UINT64_MAX - Vlen) {
++ EVPerr(EVP_F_SCRYPT_ALG, EVP_R_MEMORY_LIMIT_EXCEEDED);
++ return 0;
++ }
++
++ /* Check that the maximum memory doesn't exceed a size_t limits */
++ if (maxmem > SIZE_MAX)
++ maxmem = SIZE_MAX;
++
++ if (Blen + Vlen > maxmem) {
++ EVPerr(EVP_F_SCRYPT_ALG, EVP_R_MEMORY_LIMIT_EXCEEDED);
++ return 0;
++ }
++
++ /* If no key return to indicate parameters are OK */
++ if (key == NULL)
++ return 1;
++
++ B = OPENSSL_malloc((size_t)(Blen + Vlen));
++ if (B == NULL) {
++ EVPerr(EVP_F_SCRYPT_ALG, ERR_R_MALLOC_FAILURE);
++ return 0;
++ }
++ X = (uint32_t *)(B + Blen);
++ T = X + 32 * r;
++ V = T + 32 * r;
++ if (PKCS5_PBKDF2_HMAC(pass, passlen, salt, saltlen, 1, EVP_sha256(),
++ (int)Blen, B) == 0)
++ goto err;
++
++ for (i = 0; i < p; i++)
++ scryptROMix(B + 128 * r * i, r, N, X, T, V);
++
++ if (PKCS5_PBKDF2_HMAC(pass, passlen, B, (int)Blen, 1, EVP_sha256(),
++ keylen, key) == 0)
++ goto err;
++ rv = 1;
++ err:
++ if (rv == 0)
++ EVPerr(EVP_F_SCRYPT_ALG, EVP_R_PBKDF2_ERROR);
++
++ OPENSSL_clear_free(B, (size_t)(Blen + Vlen));
++ return rv;
++}
+
+ #endif
+diff -up openssl-1.1.1b/crypto/kdf/tls1_prf.c.evp-kdf openssl-1.1.1b/crypto/kdf/tls1_prf.c
+--- openssl-1.1.1b/crypto/kdf/tls1_prf.c.evp-kdf 2019-02-26 15:15:30.000000000 +0100
++++ openssl-1.1.1b/crypto/kdf/tls1_prf.c 2019-02-28 13:05:05.655521400 +0100
+@@ -8,11 +8,15 @@
+ */
+
+ #include <stdio.h>
++#include <stdarg.h>
++#include <string.h>
+ #include "internal/cryptlib.h"
+-#include <openssl/kdf.h>
+ #include <openssl/evp.h>
++#include <openssl/kdf.h>
+ #include "internal/evp_int.h"
++#include "kdf_local.h"
+
++static void kdf_tls1_prf_reset(EVP_KDF_IMPL *impl);
+ static int tls1_prf_alg(const EVP_MD *md,
+ const unsigned char *sec, size_t slen,
+ const unsigned char *seed, size_t seed_len,
+@@ -20,9 +24,9 @@ static int tls1_prf_alg(const EVP_MD *md
+
+ #define TLS1_PRF_MAXBUF 1024
+
+-/* TLS KDF pkey context structure */
++/* TLS KDF kdf context structure */
+
+-typedef struct {
++struct evp_kdf_impl_st {
+ /* Digest to use for PRF */
+ const EVP_MD *md;
+ /* Secret value to use for PRF */
+@@ -31,145 +35,137 @@ typedef struct {
+ /* Buffer of concatenated seed data */
+ unsigned char seed[TLS1_PRF_MAXBUF];
+ size_t seedlen;
+-} TLS1_PRF_PKEY_CTX;
++};
+
+-static int pkey_tls1_prf_init(EVP_PKEY_CTX *ctx)
++static EVP_KDF_IMPL *kdf_tls1_prf_new(void)
+ {
+- TLS1_PRF_PKEY_CTX *kctx;
++ EVP_KDF_IMPL *impl;
+
+- if ((kctx = OPENSSL_zalloc(sizeof(*kctx))) == NULL) {
+- KDFerr(KDF_F_PKEY_TLS1_PRF_INIT, ERR_R_MALLOC_FAILURE);
+- return 0;
+- }
+- ctx->data = kctx;
++ if ((impl = OPENSSL_zalloc(sizeof(*impl))) == NULL)
++ KDFerr(KDF_F_KDF_TLS1_PRF_NEW, ERR_R_MALLOC_FAILURE);
++ return impl;
++}
+
+- return 1;
++static void kdf_tls1_prf_free(EVP_KDF_IMPL *impl)
++{
++ kdf_tls1_prf_reset(impl);
++ OPENSSL_free(impl);
+ }
+
+-static void pkey_tls1_prf_cleanup(EVP_PKEY_CTX *ctx)
++static void kdf_tls1_prf_reset(EVP_KDF_IMPL *impl)
+ {
+- TLS1_PRF_PKEY_CTX *kctx = ctx->data;
+- OPENSSL_clear_free(kctx->sec, kctx->seclen);
+- OPENSSL_cleanse(kctx->seed, kctx->seedlen);
+- OPENSSL_free(kctx);
++ OPENSSL_clear_free(impl->sec, impl->seclen);
++ OPENSSL_cleanse(impl->seed, impl->seedlen);
++ memset(impl, 0, sizeof(*impl));
+ }
+
+-static int pkey_tls1_prf_ctrl(EVP_PKEY_CTX *ctx, int type, int p1, void *p2)
++static int kdf_tls1_prf_ctrl(EVP_KDF_IMPL *impl, int cmd, va_list args)
+ {
+- TLS1_PRF_PKEY_CTX *kctx = ctx->data;
+- switch (type) {
+- case EVP_PKEY_CTRL_TLS_MD:
+- kctx->md = p2;
+- return 1;
++ const unsigned char *p;
++ size_t len;
++ const EVP_MD *md;
+
+- case EVP_PKEY_CTRL_TLS_SECRET:
+- if (p1 < 0)
++ switch (cmd) {
++ case EVP_KDF_CTRL_SET_MD:
++ md = va_arg(args, const EVP_MD *);
++ if (md == NULL)
+ return 0;
+- if (kctx->sec != NULL)
+- OPENSSL_clear_free(kctx->sec, kctx->seclen);
+- OPENSSL_cleanse(kctx->seed, kctx->seedlen);
+- kctx->seedlen = 0;
+- kctx->sec = OPENSSL_memdup(p2, p1);
+- if (kctx->sec == NULL)
++
++ impl->md = md;
++ return 1;
++
++ case EVP_KDF_CTRL_SET_TLS_SECRET:
++ p = va_arg(args, const unsigned char *);
++ len = va_arg(args, size_t);
++ OPENSSL_clear_free(impl->sec, impl->seclen);
++ impl->sec = OPENSSL_memdup(p, len);
++ if (impl->sec == NULL)
+ return 0;
+- kctx->seclen = p1;
++
++ impl->seclen = len;
+ return 1;
+
+- case EVP_PKEY_CTRL_TLS_SEED:
+- if (p1 == 0 || p2 == NULL)
++ case EVP_KDF_CTRL_RESET_TLS_SEED:
++ OPENSSL_cleanse(impl->seed, impl->seedlen);
++ impl->seedlen = 0;
++ return 1;
++
++ case EVP_KDF_CTRL_ADD_TLS_SEED:
++ p = va_arg(args, const unsigned char *);
++ len = va_arg(args, size_t);
++ if (len == 0 || p == NULL)
+ return 1;
+- if (p1 < 0 || p1 > (int)(TLS1_PRF_MAXBUF - kctx->seedlen))
++
++ if (len > (TLS1_PRF_MAXBUF - impl->seedlen))
+ return 0;
+- memcpy(kctx->seed + kctx->seedlen, p2, p1);
+- kctx->seedlen += p1;
++
++ memcpy(impl->seed + impl->seedlen, p, len);
++ impl->seedlen += len;
+ return 1;
+
+ default:
+ return -2;
+-
+ }
+ }
+
+-static int pkey_tls1_prf_ctrl_str(EVP_PKEY_CTX *ctx,
+- const char *type, const char *value)
++static int kdf_tls1_prf_ctrl_str(EVP_KDF_IMPL *impl,
++ const char *type, const char *value)
+ {
+ if (value == NULL) {
+- KDFerr(KDF_F_PKEY_TLS1_PRF_CTRL_STR, KDF_R_VALUE_MISSING);
++ KDFerr(KDF_F_KDF_TLS1_PRF_CTRL_STR, KDF_R_VALUE_MISSING);
+ return 0;
+ }
+- if (strcmp(type, "md") == 0) {
+- TLS1_PRF_PKEY_CTX *kctx = ctx->data;
++ if (strcmp(type, "digest") == 0)
++ return kdf_md2ctrl(impl, kdf_tls1_prf_ctrl, EVP_KDF_CTRL_SET_MD, value);
+
+- const EVP_MD *md = EVP_get_digestbyname(value);
+- if (md == NULL) {
+- KDFerr(KDF_F_PKEY_TLS1_PRF_CTRL_STR, KDF_R_INVALID_DIGEST);
+- return 0;
+- }
+- kctx->md = md;
+- return 1;
+- }
+ if (strcmp(type, "secret") == 0)
+- return EVP_PKEY_CTX_str2ctrl(ctx, EVP_PKEY_CTRL_TLS_SECRET, value);
++ return kdf_str2ctrl(impl, kdf_tls1_prf_ctrl,
++ EVP_KDF_CTRL_SET_TLS_SECRET, value);
++
+ if (strcmp(type, "hexsecret") == 0)
+- return EVP_PKEY_CTX_hex2ctrl(ctx, EVP_PKEY_CTRL_TLS_SECRET, value);
++ return kdf_hex2ctrl(impl, kdf_tls1_prf_ctrl,
++ EVP_KDF_CTRL_SET_TLS_SECRET, value);
++
+ if (strcmp(type, "seed") == 0)
+- return EVP_PKEY_CTX_str2ctrl(ctx, EVP_PKEY_CTRL_TLS_SEED, value);
++ return kdf_str2ctrl(impl, kdf_tls1_prf_ctrl, EVP_KDF_CTRL_ADD_TLS_SEED,
++ value);
++
+ if (strcmp(type, "hexseed") == 0)
+- return EVP_PKEY_CTX_hex2ctrl(ctx, EVP_PKEY_CTRL_TLS_SEED, value);
++ return kdf_hex2ctrl(impl, kdf_tls1_prf_ctrl, EVP_KDF_CTRL_ADD_TLS_SEED,
++ value);
+
+- KDFerr(KDF_F_PKEY_TLS1_PRF_CTRL_STR, KDF_R_UNKNOWN_PARAMETER_TYPE);
+ return -2;
+ }
+
+-static int pkey_tls1_prf_derive(EVP_PKEY_CTX *ctx, unsigned char *key,
+- size_t *keylen)
++static int kdf_tls1_prf_derive(EVP_KDF_IMPL *impl, unsigned char *key,
++ size_t keylen)
+ {
+- TLS1_PRF_PKEY_CTX *kctx = ctx->data;
+- if (kctx->md == NULL) {
+- KDFerr(KDF_F_PKEY_TLS1_PRF_DERIVE, KDF_R_MISSING_MESSAGE_DIGEST);
++ if (impl->md == NULL) {
++ KDFerr(KDF_F_KDF_TLS1_PRF_DERIVE, KDF_R_MISSING_MESSAGE_DIGEST);
+ return 0;
+ }
+- if (kctx->sec == NULL) {
+- KDFerr(KDF_F_PKEY_TLS1_PRF_DERIVE, KDF_R_MISSING_SECRET);
++ if (impl->sec == NULL) {
++ KDFerr(KDF_F_KDF_TLS1_PRF_DERIVE, KDF_R_MISSING_SECRET);
+ return 0;
+ }
+- if (kctx->seedlen == 0) {
+- KDFerr(KDF_F_PKEY_TLS1_PRF_DERIVE, KDF_R_MISSING_SEED);
++ if (impl->seedlen == 0) {
++ KDFerr(KDF_F_KDF_TLS1_PRF_DERIVE, KDF_R_MISSING_SEED);
+ return 0;
+ }
+- return tls1_prf_alg(kctx->md, kctx->sec, kctx->seclen,
+- kctx->seed, kctx->seedlen,
+- key, *keylen);
++ return tls1_prf_alg(impl->md, impl->sec, impl->seclen,
++ impl->seed, impl->seedlen,
++ key, keylen);
+ }
+
+-const EVP_PKEY_METHOD tls1_prf_pkey_meth = {
+- EVP_PKEY_TLS1_PRF,
+- 0,
+- pkey_tls1_prf_init,
+- 0,
+- pkey_tls1_prf_cleanup,
+-
+- 0, 0,
+- 0, 0,
+-
+- 0,
+- 0,
+-
+- 0,
+- 0,
+-
+- 0, 0,
+-
+- 0, 0, 0, 0,
+-
+- 0, 0,
+-
+- 0, 0,
+-
+- 0,
+- pkey_tls1_prf_derive,
+- pkey_tls1_prf_ctrl,
+- pkey_tls1_prf_ctrl_str
++const EVP_KDF_METHOD tls1_prf_kdf_meth = {
++ EVP_KDF_TLS1_PRF,
++ kdf_tls1_prf_new,
++ kdf_tls1_prf_free,
++ kdf_tls1_prf_reset,
++ kdf_tls1_prf_ctrl,
++ kdf_tls1_prf_ctrl_str,
++ NULL,
++ kdf_tls1_prf_derive
+ };
+
+ static int tls1_prf_P_hash(const EVP_MD *md,
+@@ -249,12 +245,11 @@ static int tls1_prf_alg(const EVP_MD *md
+ const unsigned char *seed, size_t seed_len,
+ unsigned char *out, size_t olen)
+ {
+-
+ if (EVP_MD_type(md) == NID_md5_sha1) {
+ size_t i;
+ unsigned char *tmp;
+ if (!tls1_prf_P_hash(EVP_md5(), sec, slen/2 + (slen & 1),
+- seed, seed_len, out, olen))
++ seed, seed_len, out, olen))
+ return 0;
+
+ if ((tmp = OPENSSL_malloc(olen)) == NULL) {
+@@ -262,7 +257,7 @@ static int tls1_prf_alg(const EVP_MD *md
+ return 0;
+ }
+ if (!tls1_prf_P_hash(EVP_sha1(), sec + slen/2, slen/2 + (slen & 1),
+- seed, seed_len, tmp, olen)) {
++ seed, seed_len, tmp, olen)) {
+ OPENSSL_clear_free(tmp, olen);
+ return 0;
+ }
+diff -up openssl-1.1.1b/doc/man3/EVP_KDF_CTX.pod.evp-kdf openssl-1.1.1b/doc/man3/EVP_KDF_CTX.pod
+--- openssl-1.1.1b/doc/man3/EVP_KDF_CTX.pod.evp-kdf 2019-02-28 13:05:05.656521382 +0100
++++ openssl-1.1.1b/doc/man3/EVP_KDF_CTX.pod 2019-02-28 13:05:05.655521400 +0100
+@@ -0,0 +1,217 @@
++=pod
++
++=head1 NAME
++
++EVP_KDF_CTX, EVP_KDF_CTX_new_id, EVP_KDF_CTX_free, EVP_KDF_reset,
++EVP_KDF_ctrl, EVP_KDF_vctrl, EVP_KDF_ctrl_str, EVP_KDF_size,
++EVP_KDF_derive - EVP KDF routines
++
++=head1 SYNOPSIS
++
++ #include <openssl/kdf.h>
++
++ typedef struct evp_kdf_ctx_st EVP_KDF_CTX;
++
++ EVP_KDF_CTX *EVP_KDF_CTX_new_id(int id);
++ void EVP_KDF_CTX_free(EVP_KDF_CTX *ctx);
++ void EVP_KDF_reset(EVP_KDF_CTX *ctx);
++ int EVP_KDF_ctrl(EVP_KDF_CTX *ctx, int cmd, ...);
++ int EVP_KDF_vctrl(EVP_KDF_CTX *ctx, int cmd, va_list args);
++ int EVP_KDF_ctrl_str(EVP_KDF_CTX *ctx, const char *type, const char *value);
++ size_t EVP_KDF_size(EVP_KDF_CTX *ctx);
++ int EVP_KDF_derive(EVP_KDF_CTX *ctx, unsigned char *key, size_t keylen);
++
++=head1 DESCRIPTION
++
++The EVP KDF routines are a high level interface to Key Derivation Function
++algorithms and should be used instead of algorithm-specific functions.
++
++After creating a C<EVP_KDF_CTX> for the required algorithm using
++EVP_KDF_CTX_new_id(), inputs to the algorithm are supplied using calls to
++EVP_KDF_ctrl(), EVP_KDF_vctrl() or EVP_KDF_ctrl_str() before calling
++EVP_KDF_derive() to derive the key.
++
++=head2 Types
++
++B<EVP_KDF_CTX> is a context type that holds the algorithm inputs.
++
++=head2 Context manipulation functions
++
++EVP_KDF_CTX_new_id() creates a KDF context for the algorithm identified by the
++specified NID.
++
++EVP_KDF_CTX_free() frees up the context C<ctx>. If C<ctx> is C<NULL>, nothing
++is done.
++
++=head2 Computing functions
++
++EVP_KDF_reset() resets the context to the default state as if the context
++had just been created.
++
++EVP_KDF_ctrl() is used to provide inputs to the KDF algorithm prior to
++EVP_KDF_derive() being called. The inputs that may be provided will vary
++depending on the KDF algorithm or its implementation. This functions takes
++variable arguments, the exact expected arguments depend on C<cmd>.
++See L</CONTROLS> below for a description of standard controls.
++
++EVP_KDF_vctrl() is the variant of EVP_KDF_ctrl() that takes a C<va_list>
++argument instead of variadic arguments.
++
++EVP_KDF_ctrl_str() allows an application to send an algorithm specific control
++operation to a context C<ctx> in string form. This is intended to be used for
++options specified on the command line or in text files.
++
++EVP_KDF_size() returns the output size if the algorithm produces a fixed amount
++of output and C<SIZE_MAX> otherwise. If an error occurs then 0 is returned.
++For some algorithms an error may result if input parameters necessary to
++calculate a fixed output size have not yet been supplied.
++
++EVP_KDF_derive() derives C<keylen> bytes of key material and places it in the
++C<key> buffer. If the algorithm produces a fixed amount of output then an
++error will occur unless the C<keylen> parameter is equal to that output size,
++as returned by EVP_KDF_size().
++
++=head1 CONTROLS
++
++The standard controls are:
++
++=over 4
++
++=item B<EVP_KDF_CTRL_SET_PASS>
++
++This control expects two arguments: C<unsigned char *pass>, C<size_t passlen>
++
++Some KDF implementations require a password. For those KDF implementations
++that support it, this control sets the password.
++
++EVP_KDF_ctrl_str() takes two type strings for this control:
++
++=over 4
++
++=item "pass"
++
++The value string is used as is.
++
++=item "hexpass"
++
++The value string is expected to be a hexadecimal number, which will be
++decoded before being passed on as the control value.
++
++=back
++
++=item B<EVP_KDF_CTRL_SET_SALT>
++
++This control expects two arguments: C<unsigned char *salt>, C<size_t saltlen>
++
++Some KDF implementations can take a salt. For those KDF implementations that
++support it, this control sets the salt.
++
++The default value, if any, is implementation dependent.
++
++EVP_KDF_ctrl_str() takes two type strings for this control:
++
++=over 4
++
++=item "salt"
++
++The value string is used as is.
++
++=item "hexsalt"
++
++The value string is expected to be a hexadecimal number, which will be
++decoded before being passed on as the control value.
++
++=back
++
++=item B<EVP_KDF_CTRL_SET_ITER>
++
++This control expects one argument: C<int iter>
++
++Some KDF implementations require an iteration count. For those KDF implementations that support it, this control sets the iteration count.
++
++The default value, if any, is implementation dependent.
++
++EVP_KDF_ctrl_str() type string: "iter"
++
++The value string is expected to be a decimal number.
++
++=item B<EVP_KDF_CTRL_SET_MD>
++
++This control expects one argument: C<EVP_MD *md>
++
++For MAC implementations that use a message digest as an underlying computation
++algorithm, this control set what the digest algorithm should be.
++
++EVP_KDF_ctrl_str() type string: "md"
++
++The value string is expected to be the name of a digest.
++
++=item B<EVP_KDF_CTRL_SET_KEY>
++
++This control expects two arguments: C<unsigned char *key>, C<size_t keylen>
++
++Some KDF implementations require a key. For those KDF implementations that
++support it, this control sets the key.
++
++EVP_KDF_ctrl_str() takes two type strings for this control:
++
++=over 4
++
++=item "key"
++
++The value string is used as is.
++
++=item "hexkey"
++
++The value string is expected to be a hexadecimal number, which will be
++decoded before being passed on as the control value.
++
++=back
++
++=item B<EVP_KDF_CTRL_SET_MAXMEM_BYTES>
++
++This control expects one argument: C<uint64_t maxmem_bytes>
++
++Memory-hard password-based KDF algorithms, such as scrypt, use an amount of
++memory that depends on the load factors provided as input. For those KDF
++implementations that support it, this control sets an upper limit on the amount
++of memory that may be consumed while performing a key derivation. If this
++memory usage limit is exceeded because the load factors are chosen too high,
++the key derivation will fail.
++
++The default value is implementation dependent.
++
++EVP_KDF_ctrl_str() type string: "maxmem_bytes"
++
++The value string is expected to be a decimal number.
++
++=back
++
++=head1 RETURN VALUES
++
++EVP_KDF_CTX_new_id() returns either the newly allocated C<EVP_KDF_CTX>
++structure or C<NULL> if an error occurred.
++
++EVP_KDF_CTX_free() and EVP_KDF_reset() do not return a value.
++
++EVP_KDF_size() returns the output size. C<SIZE_MAX> is returned to indicate
++that the algorithm produces a variable amount of output; 0 to indicate failure.
++
++The remaining functions return 1 for success and 0 or a negative value for
++failure. In particular, a return value of -2 indicates the operation is not
++supported by the KDF algorithm.
++
++=head1 SEE ALSO
++
++L<EVP_KDF_SCRYPT(7)>
++
++=head1 COPYRIGHT
++
++Copyright 2018 The OpenSSL Project Authors. All Rights Reserved.
++
++Licensed under the Apache License 2.0 (the "License"). You may not use
++this file except in compliance with the License. You can obtain a copy
++in the file LICENSE in the source distribution or at
++L<https://www.openssl.org/source/license.html>.
++
++=cut
+diff -up openssl-1.1.1b/doc/man7/EVP_KDF_HKDF.pod.evp-kdf openssl-1.1.1b/doc/man7/EVP_KDF_HKDF.pod
+--- openssl-1.1.1b/doc/man7/EVP_KDF_HKDF.pod.evp-kdf 2019-02-28 13:05:05.656521382 +0100
++++ openssl-1.1.1b/doc/man7/EVP_KDF_HKDF.pod 2019-02-28 13:05:05.656521382 +0100
+@@ -0,0 +1,180 @@
++=pod
++
++=head1 NAME
++
++EVP_KDF_HKDF - The HKDF EVP_KDF implementation
++
++=head1 DESCRIPTION
++
++Support for computing the B<HKDF> KDF through the B<EVP_KDF> API.
++
++The EVP_KDF_HKDF algorithm implements the HKDF key derivation function.
++HKDF follows the "extract-then-expand" paradigm, where the KDF logically
++consists of two modules. The first stage takes the input keying material
++and "extracts" from it a fixed-length pseudorandom key K. The second stage
++"expands" the key K into several additional pseudorandom keys (the output
++of the KDF).
++
++=head2 Numeric identity
++
++B<EVP_KDF_HKDF> is the numeric identity for this implementation; it
++can be used with the EVP_KDF_CTX_new_id() function.
++
++=head2 Supported controls
++
++The supported controls are:
++
++=over 4
++
++=item B<EVP_KDF_CTRL_SET_SALT>
++
++=item B<EVP_KDF_CTRL_SET_MD>
++
++=item B<EVP_KDF_CTRL_SET_KEY>
++
++These controls work as described in L<EVP_KDF_CTX(3)/CONTROLS>.
++
++=item B<EVP_KDF_CTRL_RESET_HKDF_INFO>
++
++This control does not expect any arguments.
++
++Resets the context info buffer to zero length.
++
++=item B<EVP_KDF_CTRL_ADD_HKDF_INFO>
++
++This control expects two arguments: C<unsigned char *info>, C<size_t infolen>
++
++Sets the info value to the first B<infolen> bytes of the buffer B<info>. If a
++value is already set, the contents of the buffer are appended to the existing
++value.
++
++The total length of the context info buffer cannot exceed 1024 bytes;
++this should be more than enough for any normal use of HKDF.
++
++EVP_KDF_ctrl_str() takes two type strings for this control:
++
++=over 4
++
++=item "info"
++
++The value string is used as is.
++
++=item "hexinfo"
++
++The value string is expected to be a hexadecimal number, which will be
++decoded before being passed on as the control value.
++
++=back
++
++=item B<EVP_KDF_CTRL_SET_HKDF_MODE>
++
++This control expects one argument: C<int mode>
++
++Sets the mode for the HKDF operation. There are three modes that are currently
++defined:
++
++=over 4
++
++=item EVP_KDF_HKDF_MODE_EXTRACT_AND_EXPAND
++
++This is the default mode. Calling L<EVP_KDF_derive(3)> on an EVP_KDF_CTX set
++up for HKDF will perform an extract followed by an expand operation in one go.
++The derived key returned will be the result after the expand operation. The
++intermediate fixed-length pseudorandom key K is not returned.
++
++In this mode the digest, key, salt and info values must be set before a key is
++derived otherwise an error will occur.
++
++=item EVP_KDF_HKDF_MODE_EXTRACT_ONLY
++
++In this mode calling L<EVP_KDF_derive(3)> will just perform the extract
++operation. The value returned will be the intermediate fixed-length pseudorandom
++key K. The C<keylen> parameter must match the size of K, which can be looked
++up by calling EVP_KDF_size() after setting the mode and digest.
++
++The digest, key and salt values must be set before a key is derived otherwise
++an error will occur.
++
++=item EVP_KDF_HKDF_MODE_EXPAND_ONLY
++
++In this mode calling L<EVP_KDF_derive(3)> will just perform the expand
++operation. The input key should be set to the intermediate fixed-length
++pseudorandom key K returned from a previous extract operation.
++
++The digest, key and info values must be set before a key is derived otherwise
++an error will occur.
++
++=back
++
++EVP_KDF_ctrl_str() type string: "mode"
++
++The value string is expected to be one of: "EXTRACT_AND_EXPAND", "EXTRACT_ONLY"
++or "EXPAND_ONLY".
++
++=back
++
++=head1 NOTES
++
++A context for HKDF can be obtained by calling:
++
++ EVP_KDF_CTX *kctx = EVP_KDF_CTX_new_id(EVP_KDF_HKDF);
++
++The output length of an HKDF expand operation is specified via the C<keylen>
++parameter to the L<EVP_KDF_derive(3)> function. When using
++EVP_KDF_HKDF_MODE_EXTRACT_ONLY the C<keylen> parameter must equal the size of
++the intermediate fixed-length pseudorandom key otherwise an error will occur.
++For that mode, the fixed output size can be looked up by calling EVP_KDF_size()
++after setting the mode and digest on the C<EVP_KDF_CTX>.
++
++=head1 EXAMPLE
++
++This example derives 10 bytes using SHA-256 with the secret key "secret",
++salt value "salt" and info value "label":
++
++ EVP_KDF_CTX *kctx;
++ unsigned char out[10];
++
++ kctx = EVP_KDF_CTX_new_id(EVP_KDF_HKDF);
++
++ if (EVP_KDF_ctrl(kctx, EVP_KDF_CTRL_SET_MD, EVP_sha256()) <= 0) {
++ error("EVP_KDF_CTRL_SET_MD");
++ }
++ if (EVP_KDF_ctrl(kctx, EVP_KDF_CTRL_SET_SALT, "salt", (size_t)4) <= 0) {
++ error("EVP_KDF_CTRL_SET_SALT");
++ }
++ if (EVP_KDF_ctrl(kctx, EVP_KDF_CTRL_SET_KEY, "secret", (size_t)6) <= 0) {
++ error("EVP_KDF_CTRL_SET_KEY");
++ }
++ if (EVP_KDF_ctrl(kctx, EVP_KDF_CTRL_ADD_HKDF_INFO, "label", (size_t)5) <= 0) {
++ error("EVP_KDF_CTRL_ADD_HKDF_INFO");
++ }
++ if (EVP_KDF_derive(kctx, out, sizeof(out)) <= 0) {
++ error("EVP_KDF_derive");
++ }
++
++ EVP_KDF_CTX_free(kctx);
++
++=head1 CONFORMING TO
++
++RFC 5869
++
++=head1 SEE ALSO
++
++L<EVP_KDF_CTX>,
++L<EVP_KDF_CTX_new_id(3)>,
++L<EVP_KDF_CTX_free(3)>,
++L<EVP_KDF_ctrl(3)>,
++L<EVP_KDF_size(3)>,
++L<EVP_KDF_derive(3)>,
++L<EVP_KDF_CTX(3)/CONTROLS>
++
++=head1 COPYRIGHT
++
++Copyright 2016-2018 The OpenSSL Project Authors. All Rights Reserved.
++
++Licensed under the Apache License 2.0 (the "License"). You may not use
++this file except in compliance with the License. You can obtain a copy
++in the file LICENSE in the source distribution or at
++L<https://www.openssl.org/source/license.html>.
++
++=cut
+diff -up openssl-1.1.1b/doc/man7/EVP_KDF_PBKDF2.pod.evp-kdf openssl-1.1.1b/doc/man7/EVP_KDF_PBKDF2.pod
+--- openssl-1.1.1b/doc/man7/EVP_KDF_PBKDF2.pod.evp-kdf 2019-02-28 13:05:05.656521382 +0100
++++ openssl-1.1.1b/doc/man7/EVP_KDF_PBKDF2.pod 2019-02-28 13:05:05.656521382 +0100
+@@ -0,0 +1,78 @@
++=pod
++
++=head1 NAME
++
++EVP_KDF_PBKDF2 - The PBKDF2 EVP_KDF implementation
++
++=head1 DESCRIPTION
++
++Support for computing the B<PBKDF2> password-based KDF through the B<EVP_KDF>
++API.
++
++The EVP_KDF_PBKDF2 algorithm implements the PBKDF2 password-based key
++derivation function, as described in RFC 2898; it derives a key from a password
++using a salt and iteration count.
++
++=head2 Numeric identity
++
++B<EVP_KDF_PBKDF2> is the numeric identity for this implementation; it
++can be used with the EVP_KDF_CTX_new_id() function.
++
++=head2 Supported controls
++
++The supported controls are:
++
++=over 4
++
++=item B<EVP_KDF_CTRL_SET_PASS>
++
++=item B<EVP_KDF_CTRL_SET_SALT>
++
++=item B<EVP_KDF_CTRL_SET_ITER>
++
++=item B<EVP_KDF_CTRL_SET_MD>
++
++These controls work as described in L<EVP_KDF_CTX(3)/CONTROLS>.
++
++B<iter> is the iteration count and its value should be greater than or equal to
++1. RFC 2898 suggests an iteration count of at least 1000. The default value is
++2048. Any B<iter> less than 1 is treated as a single iteration.
++
++=back
++
++=head1 NOTES
++
++A typical application of this algorithm is to derive keying material for an
++encryption algorithm from a password in the B<pass>, a salt in B<salt>,
++and an iteration count.
++
++Increasing the B<iter> parameter slows down the algorithm which makes it
++harder for an attacker to perform a brute force attack using a large number
++of candidate passwords.
++
++No assumption is made regarding the given password; it is simply treated as a
++byte sequence.
++
++=head1 CONFORMING TO
++
++RFC 2898
++
++=head1 SEE ALSO
++
++L<EVP_KDF_CTX>,
++L<EVP_KDF_CTX_new_id(3)>,
++L<EVP_KDF_CTX_free(3)>,
++L<EVP_KDF_ctrl(3)>,
++L<EVP_KDF_derive(3)>,
++L<EVP_KDF_CTX(3)/CONTROLS>
++
++=head1 COPYRIGHT
++
++Copyright 2018 The OpenSSL Project Authors. All Rights Reserved.
++
++Licensed under the Apache License 2.0 (the "License"). You may not use
++this file except in compliance with the License. You can obtain a copy
++in the file LICENSE in the source distribution or at
++L<https://www.openssl.org/source/license.html>.
++
++=cut
+diff -up openssl-1.1.1b/doc/man7/EVP_KDF_SCRYPT.pod.evp-kdf openssl-1.1.1b/doc/man7/EVP_KDF_SCRYPT.pod
+--- openssl-1.1.1b/doc/man7/EVP_KDF_SCRYPT.pod.evp-kdf 2019-02-28 13:05:05.656521382 +0100
++++ openssl-1.1.1b/doc/man7/EVP_KDF_SCRYPT.pod 2019-02-28 13:05:05.656521382 +0100
+@@ -0,0 +1,149 @@
++=pod
++
++=head1 NAME
++
++EVP_KDF_SCRYPT - The scrypt EVP_KDF implementation
++
++=head1 DESCRIPTION
++
++Support for computing the B<scrypt> password-based KDF through the B<EVP_KDF>
++API.
++
++The EVP_KDF_SCRYPT algorithm implements the scrypt password-based key
++derivation function, as described in RFC 7914. It is memory-hard in the sense
++that it deliberately requires a significant amount of RAM for efficient
++computation. The intention of this is to render brute forcing of passwords on
++systems that lack large amounts of main memory (such as GPUs or ASICs)
++computationally infeasible.
++
++scrypt provides three work factors that can be customized: N, r and p. N, which
++has to be a positive power of two, is the general work factor and scales CPU
++time in an approximately linear fashion. r is the block size of the internally
++used hash function and p is the parallelization factor. Both r and p need to be
++greater than zero. The amount of RAM that scrypt requires for its computation
++is roughly (128 * N * r * p) bytes.
++
++In the original paper of Colin Percival ("Stronger Key Derivation via
++Sequential Memory-Hard Functions", 2009), the suggested values that give a
++computation time of less than 5 seconds on a 2.5 GHz Intel Core 2 Duo are N =
++2^20 = 1048576, r = 8, p = 1. Consequently, the required amount of memory for
++this computation is roughly 1 GiB. On a more recent CPU (Intel i7-5930K at 3.5
++GHz), this computation takes about 3 seconds. When N, r or p are not specified,
++they default to 1048576, 8, and 1, respectively. The maximum amount of RAM that
++may be used by scrypt defaults to 1025 MiB.
++
++=head2 Numeric identity
++
++B<EVP_KDF_SCRYPT> is the numeric identity for this implementation; it
++can be used with the EVP_KDF_CTX_new_id() function.
++
++=head2 Supported controls
++
++The supported controls are:
++
++=over 4
++
++=item B<EVP_KDF_CTRL_SET_PASS>
++
++=item B<EVP_KDF_CTRL_SET_SALT>
++
++These controls work as described in L<EVP_KDF_CTX(3)/CONTROLS>.
++
++=item B<EVP_KDF_CTRL_SET_SCRYPT_N>
++
++=item B<EVP_KDF_CTRL_SET_SCRYPT_R>
++
++=item B<EVP_KDF_CTRL_SET_SCRYPT_P>
++
++B<EVP_KDF_CTRL_SET_SCRYPT_N> expects one argument: C<uint64_t N>
++
++B<EVP_KDF_CTRL_SET_SCRYPT_R> expects one argument: C<uint32_t r>
++
++B<EVP_KDF_CTRL_SET_SCRYPT_P> expects one argument: C<uint32_t p>
++
++These controls configure the scrypt work factors N, r and p.
++
++EVP_KDF_ctrl_str() type strings: "N", "r" and "p", respectively.
++
++The corresponding value strings are expected to be decimal numbers.
++
++=back
++
++=head1 NOTES
++
++A context for scrypt can be obtained by calling:
++
++ EVP_KDF_CTX *kctx = EVP_KDF_CTX_new_id(EVP_KDF_SCRYPT);
++
++The output length of an scrypt key derivation is specified via the
++B<keylen> parameter to the L<EVP_KDF_derive(3)> function.
++
++=head1 EXAMPLE
++
++This example derives a 64-byte long test vector using scrypt with the password
++"password", salt "NaCl" and N = 1024, r = 8, p = 16.
++
++ EVP_KDF_CTX *kctx;
++ unsigned char out[64];
++
++ kctx = EVP_KDF_CTX_new_id(EVP_KDF_SCRYPT);
++
++ if (EVP_KDF_ctrl(kctx, EVP_KDF_CTRL_SET_PASS, "password", (size_t)8) <= 0) {
++ error("EVP_KDF_CTRL_SET_PASS");
++ }
++ if (EVP_KDF_ctrl(kctx, EVP_KDF_CTRL_SET_SALT, "NaCl", (size_t)4) <= 0) {
++ error("EVP_KDF_CTRL_SET_SALT");
++ }
++ if (EVP_KDF_ctrl(kctx, EVP_KDF_CTRL_SET_SCRYPT_N, (uint64_t)1024) <= 0) {
++ error("EVP_KDF_CTRL_SET_SCRYPT_N");
++ }
++ if (EVP_KDF_ctrl(kctx, EVP_KDF_CTRL_SET_SCRYPT_R, (uint32_t)8) <= 0) {
++ error("EVP_KDF_CTRL_SET_SCRYPT_R");
++ }
++ if (EVP_KDF_ctrl(kctx, EVP_KDF_CTRL_SET_SCRYPT_P, (uint32_t)16) <= 0) {
++ error("EVP_KDF_CTRL_SET_SCRYPT_P");
++ }
++ if (EVP_KDF_derive(kctx, out, sizeof(out)) <= 0) {
++ error("EVP_KDF_derive");
++ }
++
++ {
++ const unsigned char expected[sizeof(out)] = {
++ 0xfd, 0xba, 0xbe, 0x1c, 0x9d, 0x34, 0x72, 0x00,
++ 0x78, 0x56, 0xe7, 0x19, 0x0d, 0x01, 0xe9, 0xfe,
++ 0x7c, 0x6a, 0xd7, 0xcb, 0xc8, 0x23, 0x78, 0x30,
++ 0xe7, 0x73, 0x76, 0x63, 0x4b, 0x37, 0x31, 0x62,
++ 0x2e, 0xaf, 0x30, 0xd9, 0x2e, 0x22, 0xa3, 0x88,
++ 0x6f, 0xf1, 0x09, 0x27, 0x9d, 0x98, 0x30, 0xda,
++ 0xc7, 0x27, 0xaf, 0xb9, 0x4a, 0x83, 0xee, 0x6d,
++ 0x83, 0x60, 0xcb, 0xdf, 0xa2, 0xcc, 0x06, 0x40
++ };
++
++ assert(!memcmp(out, expected, sizeof(out)));
++ }
++
++ EVP_KDF_CTX_free(kctx);
++
++=head1 CONFORMING TO
++
++RFC 7914
++
++=head1 SEE ALSO
++
++L<EVP_KDF_CTX>,
++L<EVP_KDF_CTX_new_id(3)>,
++L<EVP_KDF_CTX_free(3)>,
++L<EVP_KDF_ctrl(3)>,
++L<EVP_KDF_derive(3)>,
++L<EVP_KDF_CTX(3)/CONTROLS>
++
++=head1 COPYRIGHT
++
++Copyright 2017-2018 The OpenSSL Project Authors. All Rights Reserved.
++
++Licensed under the OpenSSL license (the "License"). You may not use
++this file except in compliance with the License. You can obtain a copy
++in the file LICENSE in the source distribution or at
++L<https://www.openssl.org/source/license.html>.
++
++=cut
+diff -up openssl-1.1.1b/doc/man7/EVP_KDF_TLS1_PRF.pod.evp-kdf openssl-1.1.1b/doc/man7/EVP_KDF_TLS1_PRF.pod
+--- openssl-1.1.1b/doc/man7/EVP_KDF_TLS1_PRF.pod.evp-kdf 2019-02-28 13:05:05.656521382 +0100
++++ openssl-1.1.1b/doc/man7/EVP_KDF_TLS1_PRF.pod 2019-02-28 13:05:05.656521382 +0100
+@@ -0,0 +1,142 @@
++=pod
++
++=head1 NAME
++
++EVP_KDF_TLS1_PRF - The TLS1 PRF EVP_KDF implementation
++
++=head1 DESCRIPTION
++
++Support for computing the B<TLS1> PRF through the B<EVP_KDF> API.
++
++The EVP_KDF_TLS1_PRF algorithm implements the PRF used by TLS versions up to
++and including TLS 1.2.
++
++=head2 Numeric identity
++
++B<EVP_KDF_TLS1_PRF> is the numeric identity for this implementation; it
++can be used with the EVP_KDF_CTX_new_id() function.
++
++=head2 Supported controls
++
++The supported controls are:
++
++=over 4
++
++=item B<EVP_KDF_CTRL_SET_MD>
++
++This control works as described in L<EVP_KDF_CTX(3)/CONTROLS>.
++
++The C<EVP_KDF_CTRL_SET_MD> control is used to set the message digest associated
++with the TLS PRF. EVP_md5_sha1() is treated as a special case which uses the
++PRF algorithm using both B<MD5> and B<SHA1> as used in TLS 1.0 and 1.1.
++
++=item B<EVP_KDF_CTRL_SET_TLS_SECRET>
++
++This control expects two arguments: C<unsigned char *sec>, C<size_t seclen>
++
++Sets the secret value of the TLS PRF to B<seclen> bytes of the buffer B<sec>.
++Any existing secret value is replaced.
++
++EVP_KDF_ctrl_str() takes two type strings for this control:
++
++=over 4
++
++=item "secret"
++
++The value string is used as is.
++
++=item "hexsecret"
++
++The value string is expected to be a hexadecimal number, which will be
++decoded before being passed on as the control value.
++
++=back
++
++=item B<EVP_KDF_CTRL_RESET_TLS_SEED>
++
++This control does not expect any arguments.
++
++Resets the context seed buffer to zero length.
++
++=item B<EVP_KDF_CTRL_ADD_TLS_SEED>
++
++This control expects two arguments: C<unsigned char *seed>, C<size_t seedlen>
++
++Sets the seed to B<seedlen> bytes of B<seed>. If a seed is already set it is
++appended to the existing value.
++
++The total length of the context seed buffer cannot exceed 1024 bytes;
++this should be more than enough for any normal use of the TLS PRF.
++
++EVP_KDF_ctrl_str() takes two type strings for this control:
++
++=over 4
++
++=item "seed"
++
++The value string is used as is.
++
++=item "hexseed"
++
++The value string is expected to be a hexadecimal number, which will be
++decoded before being passed on as the control value.
++
++=back
++
++=back
++
++=head1 NOTES
++
++A context for the TLS PRF can be obtained by calling:
++
++ EVP_KDF_CTX *kctx = EVP_KDF_CTX_new_id(EVP_KDF_TLS1_PRF, NULL);
++
++The digest, secret value and seed must be set before a key is derived otherwise
++an error will occur.
++
++The output length of the PRF is specified by the C<keylen> parameter to the
++EVP_KDF_derive() function.
++
++=head1 EXAMPLE
++
++This example derives 10 bytes using SHA-256 with the secret key "secret"
++and seed value "seed":
++
++ EVP_KDF_CTX *kctx;
++ unsigned char out[10];
++
++ kctx = EVP_KDF_CTX_new_id(EVP_KDF_TLS1_PRF);
++ if (EVP_KDF_ctrl(kctx, EVP_KDF_CTRL_SET_MD, EVP_sha256()) <= 0) {
++ error("EVP_KDF_CTRL_SET_MD");
++ }
++ if (EVP_KDF_ctrl(kctx, EVP_KDF_CTRL_SET_TLS_SECRET,
++ "secret", (size_t)6) <= 0) {
++ error("EVP_KDF_CTRL_SET_TLS_SECRET");
++ }
++ if (EVP_KDF_ctrl(kctx, EVP_KDF_CTRL_ADD_TLS_SEED, "seed", (size_t)4) <= 0) {
++ error("EVP_KDF_CTRL_ADD_TLS_SEED");
++ }
++ if (EVP_KDF_derive(kctx, out, sizeof(out)) <= 0) {
++ error("EVP_KDF_derive");
++ }
++ EVP_KDF_CTX_free(kctx);
++
++=head1 SEE ALSO
++
++L<EVP_KDF_CTX>,
++L<EVP_KDF_CTX_new_id(3)>,
++L<EVP_KDF_CTX_free(3)>,
++L<EVP_KDF_ctrl(3)>,
++L<EVP_KDF_derive(3)>,
++L<EVP_KDF_CTX(3)/CONTROLS>
++
++=head1 COPYRIGHT
++
++Copyright 2018 The OpenSSL Project Authors. All Rights Reserved.
++
++Licensed under the Apache License 2.0 (the "License"). You may not use
++this file except in compliance with the License. You can obtain a copy
++in the file LICENSE in the source distribution or at
++L<https://www.openssl.org/source/license.html>.
++
++=cut
+diff -up openssl-1.1.1b/include/openssl/evperr.h.evp-kdf openssl-1.1.1b/include/openssl/evperr.h
+--- openssl-1.1.1b/include/openssl/evperr.h.evp-kdf 2019-02-28 13:05:05.633521807 +0100
++++ openssl-1.1.1b/include/openssl/evperr.h 2019-02-28 13:05:05.657521363 +0100
+@@ -1,6 +1,6 @@
+ /*
+ * Generated by util/mkerr.pl DO NOT EDIT
+- * Copyright 1995-2018 The OpenSSL Project Authors. All Rights Reserved.
++ * Copyright 1995-2019 The OpenSSL Project Authors. All Rights Reserved.
+ *
+ * Licensed under the OpenSSL license (the "License"). You may not use
+ * this file except in compliance with the License. You can obtain a copy
+@@ -51,6 +51,9 @@ int ERR_load_EVP_strings(void);
+ # define EVP_F_EVP_ENCRYPTDECRYPTUPDATE 219
+ # define EVP_F_EVP_ENCRYPTFINAL_EX 127
+ # define EVP_F_EVP_ENCRYPTUPDATE 167
++# define EVP_F_EVP_KDF_CTRL 224
++# define EVP_F_EVP_KDF_CTRL_STR 225
++# define EVP_F_EVP_KDF_CTX_NEW_ID 226
+ # define EVP_F_EVP_MD_CTX_COPY_EX 110
+ # define EVP_F_EVP_MD_SIZE 162
+ # define EVP_F_EVP_OPENINIT 102
+@@ -113,10 +116,12 @@ int ERR_load_EVP_strings(void);
+ # define EVP_F_PKCS5_V2_PBE_KEYIVGEN 118
+ # define EVP_F_PKCS5_V2_PBKDF2_KEYIVGEN 164
+ # define EVP_F_PKCS5_V2_SCRYPT_KEYIVGEN 180
++# define EVP_F_PKEY_KDF_CTRL 227
+ # define EVP_F_PKEY_SET_TYPE 158
+ # define EVP_F_RC2_MAGIC_TO_METH 109
+ # define EVP_F_RC5_CTRL 125
+ # define EVP_F_S390X_AES_GCM_CTRL 201
++# define EVP_F_SCRYPT_ALG 228
+ # define EVP_F_UPDATE 173
+
+ /*
+@@ -171,6 +176,7 @@ int ERR_load_EVP_strings(void);
+ # define EVP_R_ONLY_ONESHOT_SUPPORTED 177
+ # define EVP_R_OPERATION_NOT_SUPPORTED_FOR_THIS_KEYTYPE 150
+ # define EVP_R_OPERATON_NOT_INITIALIZED 151
++# define EVP_R_PARAMETER_TOO_LARGE 187
+ # define EVP_R_PARTIALLY_OVERLAPPING 162
+ # define EVP_R_PBKDF2_ERROR 181
+ # define EVP_R_PKEY_APPLICATION_ASN1_METHOD_ALREADY_REGISTERED 179
+diff -up openssl-1.1.1b/include/openssl/kdferr.h.evp-kdf openssl-1.1.1b/include/openssl/kdferr.h
+--- openssl-1.1.1b/include/openssl/kdferr.h.evp-kdf 2019-02-26 15:15:30.000000000 +0100
++++ openssl-1.1.1b/include/openssl/kdferr.h 2019-02-28 13:05:05.657521363 +0100
+@@ -1,6 +1,6 @@
+ /*
+ * Generated by util/mkerr.pl DO NOT EDIT
+- * Copyright 1995-2018 The OpenSSL Project Authors. All Rights Reserved.
++ * Copyright 1995-2019 The OpenSSL Project Authors. All Rights Reserved.
+ *
+ * Licensed under the OpenSSL license (the "License"). You may not use
+ * this file except in compliance with the License. You can obtain a copy
+@@ -19,6 +19,23 @@ int ERR_load_KDF_strings(void);
+ /*
+ * KDF function codes.
+ */
++# define KDF_F_HKDF_EXTRACT 112
++# define KDF_F_KDF_HKDF_DERIVE 113
++# define KDF_F_KDF_HKDF_NEW 114
++# define KDF_F_KDF_HKDF_SIZE 115
++# define KDF_F_KDF_MD2CTRL 116
++# define KDF_F_KDF_PBKDF2_CTRL_STR 117
++# define KDF_F_KDF_PBKDF2_DERIVE 118
++# define KDF_F_KDF_PBKDF2_NEW 119
++# define KDF_F_KDF_SCRYPT_CTRL_STR 120
++# define KDF_F_KDF_SCRYPT_CTRL_UINT32 121
++# define KDF_F_KDF_SCRYPT_CTRL_UINT64 122
++# define KDF_F_KDF_SCRYPT_DERIVE 123
++# define KDF_F_KDF_SCRYPT_NEW 124
++# define KDF_F_KDF_TLS1_PRF_CTRL_STR 125
++# define KDF_F_KDF_TLS1_PRF_DERIVE 126
++# define KDF_F_KDF_TLS1_PRF_NEW 127
++# define KDF_F_PBKDF2_SET_MEMBUF 128
+ # define KDF_F_PKEY_HKDF_CTRL_STR 103
+ # define KDF_F_PKEY_HKDF_DERIVE 102
+ # define KDF_F_PKEY_HKDF_INIT 108
+@@ -30,6 +47,7 @@ int ERR_load_KDF_strings(void);
+ # define KDF_F_PKEY_TLS1_PRF_CTRL_STR 100
+ # define KDF_F_PKEY_TLS1_PRF_DERIVE 101
+ # define KDF_F_PKEY_TLS1_PRF_INIT 110
++# define KDF_F_SCRYPT_SET_MEMBUF 129
+ # define KDF_F_TLS1_PRF_ALG 111
+
+ /*
+@@ -47,5 +65,6 @@ int ERR_load_KDF_strings(void);
+ # define KDF_R_UNKNOWN_PARAMETER_TYPE 103
+ # define KDF_R_VALUE_ERROR 108
+ # define KDF_R_VALUE_MISSING 102
++# define KDF_R_WRONG_OUTPUT_BUFFER_SIZE 112
+
+ #endif
+diff -up openssl-1.1.1b/include/openssl/kdf.h.evp-kdf openssl-1.1.1b/include/openssl/kdf.h
+--- openssl-1.1.1b/include/openssl/kdf.h.evp-kdf 2019-02-26 15:15:30.000000000 +0100
++++ openssl-1.1.1b/include/openssl/kdf.h 2019-02-28 13:05:05.657521363 +0100
+@@ -10,10 +10,50 @@
+ #ifndef HEADER_KDF_H
+ # define HEADER_KDF_H
+
++# include <openssl/ossl_typ.h>
+ # include <openssl/kdferr.h>
+-#ifdef __cplusplus
++# ifdef __cplusplus
+ extern "C" {
+-#endif
++# endif
++
++# define EVP_KDF_PBKDF2 NID_id_pbkdf2
++# define EVP_KDF_SCRYPT NID_id_scrypt
++# define EVP_KDF_TLS1_PRF NID_tls1_prf
++# define EVP_KDF_HKDF NID_hkdf
++
++EVP_KDF_CTX *EVP_KDF_CTX_new_id(int id);
++void EVP_KDF_CTX_free(EVP_KDF_CTX *ctx);
++
++void EVP_KDF_reset(EVP_KDF_CTX *ctx);
++int EVP_KDF_ctrl(EVP_KDF_CTX *ctx, int cmd, ...);
++int EVP_KDF_vctrl(EVP_KDF_CTX *ctx, int cmd, va_list args);
++int EVP_KDF_ctrl_str(EVP_KDF_CTX *ctx, const char *type, const char *value);
++size_t EVP_KDF_size(EVP_KDF_CTX *ctx);
++int EVP_KDF_derive(EVP_KDF_CTX *ctx, unsigned char *key, size_t keylen);
++
++
++# define EVP_KDF_CTRL_SET_PASS 0x01 /* unsigned char *, size_t */
++# define EVP_KDF_CTRL_SET_SALT 0x02 /* unsigned char *, size_t */
++# define EVP_KDF_CTRL_SET_ITER 0x03 /* int */
++# define EVP_KDF_CTRL_SET_MD 0x04 /* EVP_MD * */
++# define EVP_KDF_CTRL_SET_KEY 0x05 /* unsigned char *, size_t */
++# define EVP_KDF_CTRL_SET_MAXMEM_BYTES 0x06 /* uint64_t */
++# define EVP_KDF_CTRL_SET_TLS_SECRET 0x07 /* unsigned char *, size_t */
++# define EVP_KDF_CTRL_RESET_TLS_SEED 0x08
++# define EVP_KDF_CTRL_ADD_TLS_SEED 0x09 /* unsigned char *, size_t */
++# define EVP_KDF_CTRL_RESET_HKDF_INFO 0x0a
++# define EVP_KDF_CTRL_ADD_HKDF_INFO 0x0b /* unsigned char *, size_t */
++# define EVP_KDF_CTRL_SET_HKDF_MODE 0x0c /* int */
++# define EVP_KDF_CTRL_SET_SCRYPT_N 0x0d /* uint64_t */
++# define EVP_KDF_CTRL_SET_SCRYPT_R 0x0e /* uint32_t */
++# define EVP_KDF_CTRL_SET_SCRYPT_P 0x0f /* uint32_t */
++
++# define EVP_KDF_HKDF_MODE_EXTRACT_AND_EXPAND 0
++# define EVP_KDF_HKDF_MODE_EXTRACT_ONLY 1
++# define EVP_KDF_HKDF_MODE_EXPAND_ONLY 2
++
++
++/**** The legacy PKEY-based KDF API follows. ****/
+
+ # define EVP_PKEY_CTRL_TLS_MD (EVP_PKEY_ALG_CTRL)
+ # define EVP_PKEY_CTRL_TLS_SECRET (EVP_PKEY_ALG_CTRL + 1)
+@@ -30,9 +70,12 @@ extern "C" {
+ # define EVP_PKEY_CTRL_SCRYPT_P (EVP_PKEY_ALG_CTRL + 12)
+ # define EVP_PKEY_CTRL_SCRYPT_MAXMEM_BYTES (EVP_PKEY_ALG_CTRL + 13)
+
+-# define EVP_PKEY_HKDEF_MODE_EXTRACT_AND_EXPAND 0
+-# define EVP_PKEY_HKDEF_MODE_EXTRACT_ONLY 1
+-# define EVP_PKEY_HKDEF_MODE_EXPAND_ONLY 2
++# define EVP_PKEY_HKDEF_MODE_EXTRACT_AND_EXPAND \
++ EVP_KDF_HKDF_MODE_EXTRACT_AND_EXPAND
++# define EVP_PKEY_HKDEF_MODE_EXTRACT_ONLY \
++ EVP_KDF_HKDF_MODE_EXTRACT_ONLY
++# define EVP_PKEY_HKDEF_MODE_EXPAND_ONLY \
++ EVP_KDF_HKDF_MODE_EXPAND_ONLY
+
+ # define EVP_PKEY_CTX_set_tls1_prf_md(pctx, md) \
+ EVP_PKEY_CTX_ctrl(pctx, -1, EVP_PKEY_OP_DERIVE, \
+@@ -91,7 +134,7 @@ extern "C" {
+ EVP_PKEY_CTRL_SCRYPT_MAXMEM_BYTES, maxmem_bytes)
+
+
+-# ifdef __cplusplus
++# ifdef __cplusplus
+ }
+ # endif
+ #endif
+diff -up openssl-1.1.1b/include/openssl/ossl_typ.h.evp-kdf openssl-1.1.1b/include/openssl/ossl_typ.h
+--- openssl-1.1.1b/include/openssl/ossl_typ.h.evp-kdf 2019-02-26 15:15:30.000000000 +0100
++++ openssl-1.1.1b/include/openssl/ossl_typ.h 2019-02-28 13:05:05.657521363 +0100
+@@ -97,6 +97,8 @@ typedef struct evp_pkey_asn1_method_st E
+ typedef struct evp_pkey_method_st EVP_PKEY_METHOD;
+ typedef struct evp_pkey_ctx_st EVP_PKEY_CTX;
+
++typedef struct evp_kdf_ctx_st EVP_KDF_CTX;
++
+ typedef struct evp_Encode_Ctx_st EVP_ENCODE_CTX;
+
+ typedef struct hmac_ctx_st HMAC_CTX;
+diff -up openssl-1.1.1b/test/build.info.evp-kdf openssl-1.1.1b/test/build.info
+--- openssl-1.1.1b/test/build.info.evp-kdf 2019-02-26 15:15:30.000000000 +0100
++++ openssl-1.1.1b/test/build.info 2019-02-28 13:05:05.657521363 +0100
+@@ -43,7 +43,8 @@ INCLUDE_MAIN___test_libtestutil_OLB = /I
+ ssl_test_ctx_test ssl_test x509aux cipherlist_test asynciotest \
+ bio_callback_test bio_memleak_test \
+ bioprinttest sslapitest dtlstest sslcorrupttest bio_enc_test \
+- pkey_meth_test pkey_meth_kdf_test uitest cipherbytes_test \
++ pkey_meth_test pkey_meth_kdf_test evp_kdf_test uitest \
++ cipherbytes_test \
+ asn1_encode_test asn1_decode_test asn1_string_table_test \
+ x509_time_test x509_dup_cert_test x509_check_cert_pkey_test \
+ recordlentest drbgtest sslbuffertest \
+@@ -335,6 +336,10 @@ INCLUDE_MAIN___test_libtestutil_OLB = /I
+ INCLUDE[pkey_meth_kdf_test]=../include
+ DEPEND[pkey_meth_kdf_test]=../libcrypto libtestutil.a
+
++ SOURCE[evp_kdf_test]=evp_kdf_test.c
++ INCLUDE[evp_kdf_test]=../include
++ DEPEND[evp_kdf_test]=../libcrypto libtestutil.a
++
+ SOURCE[x509_time_test]=x509_time_test.c
+ INCLUDE[x509_time_test]=../include
+ DEPEND[x509_time_test]=../libcrypto libtestutil.a
+diff -up openssl-1.1.1b/test/evp_kdf_test.c.evp-kdf openssl-1.1.1b/test/evp_kdf_test.c
+--- openssl-1.1.1b/test/evp_kdf_test.c.evp-kdf 2019-02-28 13:05:05.658521345 +0100
++++ openssl-1.1.1b/test/evp_kdf_test.c 2019-02-28 13:05:05.658521345 +0100
+@@ -0,0 +1,237 @@
++/*
++ * Copyright 2018-2019 The OpenSSL Project Authors. All Rights Reserved.
++ * Copyright (c) 2018-2019, Oracle and/or its affiliates. All rights reserved.
++ *
++ * Licensed under the Apache License 2.0 (the "License"). You may not use
++ * this file except in compliance with the License. You can obtain a copy
++ * in the file LICENSE in the source distribution or at
++ * https://www.openssl.org/source/license.html
++ */
++
++/* Tests of the EVP_KDF_CTX APIs */
++
++#include <stdio.h>
++#include <string.h>
++
++#include <openssl/evp.h>
++#include <openssl/kdf.h>
++#include "testutil.h"
++
++static int test_kdf_tls1_prf(void)
++{
++ int ret = 0;
++ EVP_KDF_CTX *kctx;
++ unsigned char out[16];
++
++ if ((kctx = EVP_KDF_CTX_new_id(EVP_KDF_TLS1_PRF)) == NULL) {
++ TEST_error("EVP_KDF_TLS1_PRF");
++ goto err;
++ }
++ if (EVP_KDF_ctrl(kctx, EVP_KDF_CTRL_SET_MD, EVP_sha256()) <= 0) {
++ TEST_error("EVP_KDF_CTRL_SET_MD");
++ goto err;
++ }
++ if (EVP_KDF_ctrl(kctx, EVP_KDF_CTRL_SET_TLS_SECRET,
++ "secret", (size_t)6) <= 0) {
++ TEST_error("EVP_KDF_CTRL_SET_TLS_SECRET");
++ goto err;
++ }
++ if (EVP_KDF_ctrl(kctx, EVP_KDF_CTRL_ADD_TLS_SEED, "seed", (size_t)4) <= 0) {
++ TEST_error("EVP_KDF_CTRL_ADD_TLS_SEED");
++ goto err;
++ }
++ if (EVP_KDF_derive(kctx, out, sizeof(out)) <= 0) {
++ TEST_error("EVP_KDF_derive");
++ goto err;
++ }
++
++ {
++ const unsigned char expected[sizeof(out)] = {
++ 0x8e, 0x4d, 0x93, 0x25, 0x30, 0xd7, 0x65, 0xa0,
++ 0xaa, 0xe9, 0x74, 0xc3, 0x04, 0x73, 0x5e, 0xcc
++ };
++ if (!TEST_mem_eq(out, sizeof(out), expected, sizeof(expected))) {
++ goto err;
++ }
++ }
++ ret = 1;
++err:
++ EVP_KDF_CTX_free(kctx);
++ return ret;
++}
++
++static int test_kdf_hkdf(void)
++{
++ int ret = 0;
++ EVP_KDF_CTX *kctx;
++ unsigned char out[10];
++
++ if ((kctx = EVP_KDF_CTX_new_id(EVP_KDF_HKDF)) == NULL) {
++ TEST_error("EVP_KDF_HKDF");
++ goto err;
++ }
++ if (EVP_KDF_ctrl(kctx, EVP_KDF_CTRL_SET_MD, EVP_sha256()) <= 0) {
++ TEST_error("EVP_KDF_CTRL_SET_MD");
++ goto err;
++ }
++ if (EVP_KDF_ctrl(kctx, EVP_KDF_CTRL_SET_SALT, "salt", (size_t)4) <= 0) {
++ TEST_error("EVP_KDF_CTRL_SET_SALT");
++ goto err;
++ }
++ if (EVP_KDF_ctrl(kctx, EVP_KDF_CTRL_SET_KEY, "secret", (size_t)6) <= 0) {
++ TEST_error("EVP_KDF_CTRL_SET_KEY");
++ goto err;
++ }
++ if (EVP_KDF_ctrl(kctx, EVP_KDF_CTRL_ADD_HKDF_INFO,
++ "label", (size_t)5) <= 0) {
++ TEST_error("EVP_KDF_CTRL_ADD_HKDF_INFO");
++ goto err;
++ }
++ if (EVP_KDF_derive(kctx, out, sizeof(out)) <= 0) {
++ TEST_error("EVP_KDF_derive");
++ goto err;
++ }
++
++ {
++ const unsigned char expected[sizeof(out)] = {
++ 0x2a, 0xc4, 0x36, 0x9f, 0x52, 0x59, 0x96, 0xf8, 0xde, 0x13
++ };
++ if (!TEST_mem_eq(out, sizeof(out), expected, sizeof(expected))) {
++ goto err;
++ }
++ }
++ ret = 1;
++err:
++ EVP_KDF_CTX_free(kctx);
++ return ret;
++}
++
++static int test_kdf_pbkdf2(void)
++{
++ int ret = 0;
++ EVP_KDF_CTX *kctx;
++ unsigned char out[32];
++
++ if ((kctx = EVP_KDF_CTX_new_id(EVP_KDF_PBKDF2)) == NULL) {
++ TEST_error("EVP_KDF_PBKDF2");
++ goto err;
++ }
++ if (EVP_KDF_ctrl(kctx, EVP_KDF_CTRL_SET_PASS, "password", (size_t)8) <= 0) {
++ TEST_error("EVP_KDF_CTRL_SET_PASS");
++ goto err;
++ }
++ if (EVP_KDF_ctrl(kctx, EVP_KDF_CTRL_SET_SALT, "salt", (size_t)4) <= 0) {
++ TEST_error("EVP_KDF_CTRL_SET_SALT");
++ goto err;
++ }
++ if (EVP_KDF_ctrl(kctx, EVP_KDF_CTRL_SET_ITER, 2) <= 0) {
++ TEST_error("EVP_KDF_CTRL_SET_ITER");
++ goto err;
++ }
++ if (EVP_KDF_ctrl(kctx, EVP_KDF_CTRL_SET_MD, EVP_sha256()) <= 0) {
++ TEST_error("EVP_KDF_CTRL_SET_MD");
++ goto err;
++ }
++ if (EVP_KDF_derive(kctx, out, sizeof(out)) <= 0) {
++ TEST_error("EVP_KDF_derive");
++ goto err;
++ }
++
++ {
++ const unsigned char expected[sizeof(out)] = {
++ 0xae, 0x4d, 0x0c, 0x95, 0xaf, 0x6b, 0x46, 0xd3,
++ 0x2d, 0x0a, 0xdf, 0xf9, 0x28, 0xf0, 0x6d, 0xd0,
++ 0x2a, 0x30, 0x3f, 0x8e, 0xf3, 0xc2, 0x51, 0xdf,
++ 0xd6, 0xe2, 0xd8, 0x5a, 0x95, 0x47, 0x4c, 0x43
++ };
++ if (!TEST_mem_eq(out, sizeof(out), expected, sizeof(expected))) {
++ goto err;
++ }
++ }
++ ret = 1;
++err:
++ EVP_KDF_CTX_free(kctx);
++ return ret;
++}
++
++#ifndef OPENSSL_NO_SCRYPT
++static int test_kdf_scrypt(void)
++{
++ int ret = 0;
++ EVP_KDF_CTX *kctx;
++ unsigned char out[64];
++
++ if ((kctx = EVP_KDF_CTX_new_id(EVP_KDF_SCRYPT)) == NULL) {
++ TEST_error("EVP_KDF_SCRYPT");
++ goto err;
++ }
++ if (EVP_KDF_ctrl(kctx, EVP_KDF_CTRL_SET_PASS, "password", (size_t)8) <= 0) {
++ TEST_error("EVP_KDF_CTRL_SET_PASS");
++ goto err;
++ }
++ if (EVP_KDF_ctrl(kctx, EVP_KDF_CTRL_SET_SALT, "NaCl", (size_t)4) <= 0) {
++ TEST_error("EVP_KDF_CTRL_SET_SALT");
++ goto err;
++ }
++ if (EVP_KDF_ctrl(kctx, EVP_KDF_CTRL_SET_SCRYPT_N, (uint64_t)1024) <= 0) {
++ TEST_error("EVP_KDF_CTRL_SET_SCRYPT_N");
++ goto err;
++ }
++ if (EVP_KDF_ctrl(kctx, EVP_KDF_CTRL_SET_SCRYPT_R, (uint32_t)8) <= 0) {
++ TEST_error("EVP_KDF_CTRL_SET_SCRYPT_R");
++ goto err;
++ }
++ if (EVP_KDF_ctrl(kctx, EVP_KDF_CTRL_SET_SCRYPT_P, (uint32_t)16) <= 0) {
++ TEST_error("EVP_KDF_CTRL_SET_SCRYPT_P");
++ goto err;
++ }
++ if (EVP_KDF_ctrl(kctx, EVP_KDF_CTRL_SET_MAXMEM_BYTES, (uint64_t)16) <= 0) {
++ TEST_error("EVP_KDF_CTRL_SET_MAXMEM_BYTES");
++ goto err;
++ }
++ if (EVP_KDF_derive(kctx, out, sizeof(out)) > 0) {
++ TEST_error("EVP_KDF_derive should have failed");
++ goto err;
++ }
++ if (EVP_KDF_ctrl(kctx, EVP_KDF_CTRL_SET_MAXMEM_BYTES,
++ (uint64_t)(10 * 1024 * 1024)) <= 0) {
++ TEST_error("EVP_KDF_CTRL_SET_MAXMEM_BYTES");
++ goto err;
++ }
++ if (EVP_KDF_derive(kctx, out, sizeof(out)) <= 0) {
++ TEST_error("EVP_KDF_derive");
++ goto err;
++ }
++
++ {
++ const unsigned char expected[sizeof(out)] = {
++ 0xfd, 0xba, 0xbe, 0x1c, 0x9d, 0x34, 0x72, 0x00,
++ 0x78, 0x56, 0xe7, 0x19, 0x0d, 0x01, 0xe9, 0xfe,
++ 0x7c, 0x6a, 0xd7, 0xcb, 0xc8, 0x23, 0x78, 0x30,
++ 0xe7, 0x73, 0x76, 0x63, 0x4b, 0x37, 0x31, 0x62,
++ 0x2e, 0xaf, 0x30, 0xd9, 0x2e, 0x22, 0xa3, 0x88,
++ 0x6f, 0xf1, 0x09, 0x27, 0x9d, 0x98, 0x30, 0xda,
++ 0xc7, 0x27, 0xaf, 0xb9, 0x4a, 0x83, 0xee, 0x6d,
++ 0x83, 0x60, 0xcb, 0xdf, 0xa2, 0xcc, 0x06, 0x40
++ };
++ if (!TEST_mem_eq(out, sizeof(out), expected, sizeof(expected))) {
++ goto err;
++ }
++ }
++ ret = 1;
++err:
++ EVP_KDF_CTX_free(kctx);
++ return ret;
++}
++#endif
++
++int setup_tests(void)
++{
++ ADD_TEST(test_kdf_tls1_prf);
++ ADD_TEST(test_kdf_hkdf);
++ ADD_TEST(test_kdf_pbkdf2);
++#ifndef OPENSSL_NO_SCRYPT
++ ADD_TEST(test_kdf_scrypt);
++#endif
++ return 1;
++}
+diff -up openssl-1.1.1b/test/evp_test.c.evp-kdf openssl-1.1.1b/test/evp_test.c
+--- openssl-1.1.1b/test/evp_test.c.evp-kdf 2019-02-26 15:15:30.000000000 +0100
++++ openssl-1.1.1b/test/evp_test.c 2019-02-28 13:05:05.658521345 +0100
+@@ -1672,13 +1672,14 @@ static const EVP_TEST_METHOD encode_test
+ encode_test_run,
+ };
+
++
+ /**
+ *** KDF TESTS
+ **/
+
+ typedef struct kdf_data_st {
+ /* Context for this operation */
+- EVP_PKEY_CTX *ctx;
++ EVP_KDF_CTX *ctx;
+ /* Expected output */
+ unsigned char *output;
+ size_t output_len;
+@@ -1705,16 +1706,11 @@ static int kdf_test_init(EVP_TEST *t, co
+
+ if (!TEST_ptr(kdata = OPENSSL_zalloc(sizeof(*kdata))))
+ return 0;
+- kdata->ctx = EVP_PKEY_CTX_new_id(kdf_nid, NULL);
++ kdata->ctx = EVP_KDF_CTX_new_id(kdf_nid);
+ if (kdata->ctx == NULL) {
+ OPENSSL_free(kdata);
+ return 0;
+ }
+- if (EVP_PKEY_derive_init(kdata->ctx) <= 0) {
+- EVP_PKEY_CTX_free(kdata->ctx);
+- OPENSSL_free(kdata);
+- return 0;
+- }
+ t->data = kdata;
+ return 1;
+ }
+@@ -1723,7 +1719,42 @@ static void kdf_test_cleanup(EVP_TEST *t
+ {
+ KDF_DATA *kdata = t->data;
+ OPENSSL_free(kdata->output);
+- EVP_PKEY_CTX_free(kdata->ctx);
++ EVP_KDF_CTX_free(kdata->ctx);
++}
++
++static int kdf_test_ctrl(EVP_TEST *t, EVP_KDF_CTX *kctx,
++ const char *value)
++{
++ int rv;
++ char *p, *tmpval;
++
++ if (!TEST_ptr(tmpval = OPENSSL_strdup(value)))
++ return 0;
++ p = strchr(tmpval, ':');
++ if (p != NULL)
++ *p++ = '\0';
++ rv = EVP_KDF_ctrl_str(kctx, tmpval, p);
++ if (rv == -2) {
++ t->err = "KDF_CTRL_INVALID";
++ rv = 1;
++ } else if (p != NULL && rv <= 0) {
++ /* If p has an OID and lookup fails assume disabled algorithm */
++ int nid = OBJ_sn2nid(p);
++
++ if (nid == NID_undef)
++ nid = OBJ_ln2nid(p);
++ if (nid != NID_undef
++ && EVP_get_digestbynid(nid) == NULL
++ && EVP_get_cipherbynid(nid) == NULL) {
++ t->skip = 1;
++ rv = 1;
++ } else {
++ t->err = "KDF_CTRL_ERROR";
++ rv = 1;
++ }
++ }
++ OPENSSL_free(tmpval);
++ return rv > 0;
+ }
+
+ static int kdf_test_parse(EVP_TEST *t,
+@@ -1734,7 +1765,7 @@ static int kdf_test_parse(EVP_TEST *t,
+ if (strcmp(keyword, "Output") == 0)
+ return parse_bin(value, &kdata->output, &kdata->output_len);
+ if (strncmp(keyword, "Ctrl", 4) == 0)
+- return pkey_test_ctrl(t, kdata->ctx, value);
++ return kdf_test_ctrl(t, kdata->ctx, value);
+ return 0;
+ }
+
+@@ -1748,7 +1779,7 @@ static int kdf_test_run(EVP_TEST *t)
+ t->err = "INTERNAL_ERROR";
+ goto err;
+ }
+- if (EVP_PKEY_derive(expected->ctx, got, &got_len) <= 0) {
++ if (EVP_KDF_derive(expected->ctx, got, got_len) <= 0) {
+ t->err = "KDF_DERIVE_ERROR";
+ goto err;
+ }
+@@ -1774,6 +1805,106 @@ static const EVP_TEST_METHOD kdf_test_me
+
+
+ /**
++*** PKEY KDF TESTS
++**/
++
++typedef struct pkey_kdf_data_st {
++ /* Context for this operation */
++ EVP_PKEY_CTX *ctx;
++ /* Expected output */
++ unsigned char *output;
++ size_t output_len;
++} PKEY_KDF_DATA;
++
++/*
++ * Perform public key operation setup: lookup key, allocated ctx and call
++ * the appropriate initialisation function
++ */
++static int pkey_kdf_test_init(EVP_TEST *t, const char *name)
++{
++ PKEY_KDF_DATA *kdata;
++ int kdf_nid = OBJ_sn2nid(name);
++
++#ifdef OPENSSL_NO_SCRYPT
++ if (strcmp(name, "scrypt") == 0) {
++ t->skip = 1;
++ return 1;
++ }
++#endif
++
++ if (kdf_nid == NID_undef)
++ kdf_nid = OBJ_ln2nid(name);
++
++ if (!TEST_ptr(kdata = OPENSSL_zalloc(sizeof(*kdata))))
++ return 0;
++ kdata->ctx = EVP_PKEY_CTX_new_id(kdf_nid, NULL);
++ if (kdata->ctx == NULL) {
++ OPENSSL_free(kdata);
++ return 0;
++ }
++ if (EVP_PKEY_derive_init(kdata->ctx) <= 0) {
++ EVP_PKEY_CTX_free(kdata->ctx);
++ OPENSSL_free(kdata);
++ return 0;
++ }
++ t->data = kdata;
++ return 1;
++}
++
++static void pkey_kdf_test_cleanup(EVP_TEST *t)
++{
++ PKEY_KDF_DATA *kdata = t->data;
++ OPENSSL_free(kdata->output);
++ EVP_PKEY_CTX_free(kdata->ctx);
++}
++
++static int pkey_kdf_test_parse(EVP_TEST *t,
++ const char *keyword, const char *value)
++{
++ PKEY_KDF_DATA *kdata = t->data;
++
++ if (strcmp(keyword, "Output") == 0)
++ return parse_bin(value, &kdata->output, &kdata->output_len);
++ if (strncmp(keyword, "Ctrl", 4) == 0)
++ return pkey_test_ctrl(t, kdata->ctx, value);
++ return 0;
++}
++
++static int pkey_kdf_test_run(EVP_TEST *t)
++{
++ PKEY_KDF_DATA *expected = t->data;
++ unsigned char *got = NULL;
++ size_t got_len = expected->output_len;
++
++ if (!TEST_ptr(got = OPENSSL_malloc(got_len))) {
++ t->err = "INTERNAL_ERROR";
++ goto err;
++ }
++ if (EVP_PKEY_derive(expected->ctx, got, &got_len) <= 0) {
++ t->err = "KDF_DERIVE_ERROR";
++ goto err;
++ }
++ if (!TEST_mem_eq(expected->output, expected->output_len, got, got_len)) {
++ t->err = "KDF_MISMATCH";
++ goto err;
++ }
++ t->err = NULL;
++
++ err:
++ OPENSSL_free(got);
++ return 1;
++}
++
++static const EVP_TEST_METHOD pkey_kdf_test_method = {
++ "PKEYKDF",
++ pkey_kdf_test_init,
++ pkey_kdf_test_cleanup,
++ pkey_kdf_test_parse,
++ pkey_kdf_test_run
++};
++
++
++/**
+ *** KEYPAIR TESTS
+ **/
+
+@@ -2277,6 +2408,7 @@ static const EVP_TEST_METHOD *evp_test_l
+ &digestverify_test_method,
+ &encode_test_method,
+ &kdf_test_method,
++ &pkey_kdf_test_method,
+ &keypair_test_method,
+ &keygen_test_method,
+ &mac_test_method,
+diff -up openssl-1.1.1b/test/pkey_meth_kdf_test.c.evp-kdf openssl-1.1.1b/test/pkey_meth_kdf_test.c
+--- openssl-1.1.1b/test/pkey_meth_kdf_test.c.evp-kdf 2019-02-26 15:15:30.000000000 +0100
++++ openssl-1.1.1b/test/pkey_meth_kdf_test.c 2019-02-28 13:05:05.658521345 +0100
+@@ -1,5 +1,5 @@
+ /*
+- * Copyright 2017-2018 The OpenSSL Project Authors. All Rights Reserved.
++ * Copyright 2017-2019 The OpenSSL Project Authors. All Rights Reserved.
+ *
+ * Licensed under the OpenSSL license (the "License"). You may not use
+ * this file except in compliance with the License. You can obtain a copy
+@@ -18,30 +18,34 @@
+
+ static int test_kdf_tls1_prf(void)
+ {
++ int ret = 0;
+ EVP_PKEY_CTX *pctx;
+ unsigned char out[16];
+ size_t outlen = sizeof(out);
+- pctx = EVP_PKEY_CTX_new_id(EVP_PKEY_TLS1_PRF, NULL);
+
++ if ((pctx = EVP_PKEY_CTX_new_id(EVP_PKEY_TLS1_PRF, NULL)) == NULL) {
++ TEST_error("EVP_PKEY_TLS1_PRF");
++ goto err;
++ }
+ if (EVP_PKEY_derive_init(pctx) <= 0) {
+ TEST_error("EVP_PKEY_derive_init");
+- return 0;
++ goto err;
+ }
+ if (EVP_PKEY_CTX_set_tls1_prf_md(pctx, EVP_sha256()) <= 0) {
+ TEST_error("EVP_PKEY_CTX_set_tls1_prf_md");
+- return 0;
++ goto err;
+ }
+ if (EVP_PKEY_CTX_set1_tls1_prf_secret(pctx, "secret", 6) <= 0) {
+ TEST_error("EVP_PKEY_CTX_set1_tls1_prf_secret");
+- return 0;
++ goto err;
+ }
+ if (EVP_PKEY_CTX_add1_tls1_prf_seed(pctx, "seed", 4) <= 0) {
+ TEST_error("EVP_PKEY_CTX_add1_tls1_prf_seed");
+- return 0;
++ goto err;
+ }
+ if (EVP_PKEY_derive(pctx, out, &outlen) <= 0) {
+ TEST_error("EVP_PKEY_derive");
+- return 0;
++ goto err;
+ }
+
+ {
+@@ -50,43 +54,49 @@ static int test_kdf_tls1_prf(void)
+ 0xaa, 0xe9, 0x74, 0xc3, 0x04, 0x73, 0x5e, 0xcc
+ };
+ if (!TEST_mem_eq(out, sizeof(out), expected, sizeof(expected))) {
+- return 0;
++ goto err;
+ }
+ }
++ ret = 1;
++err:
+ EVP_PKEY_CTX_free(pctx);
+- return 1;
++ return ret;
+ }
+
+ static int test_kdf_hkdf(void)
+ {
++ int ret = 0;
+ EVP_PKEY_CTX *pctx;
+ unsigned char out[10];
+ size_t outlen = sizeof(out);
+- pctx = EVP_PKEY_CTX_new_id(EVP_PKEY_HKDF, NULL);
+
++ if ((pctx = EVP_PKEY_CTX_new_id(EVP_PKEY_HKDF, NULL)) == NULL) {
++ TEST_error("EVP_PKEY_HKDF");
++ goto err;
++ }
+ if (EVP_PKEY_derive_init(pctx) <= 0) {
+ TEST_error("EVP_PKEY_derive_init");
+- return 0;
++ goto err;
+ }
+ if (EVP_PKEY_CTX_set_hkdf_md(pctx, EVP_sha256()) <= 0) {
+ TEST_error("EVP_PKEY_CTX_set_hkdf_md");
+- return 0;
++ goto err;
+ }
+ if (EVP_PKEY_CTX_set1_hkdf_salt(pctx, "salt", 4) <= 0) {
+ TEST_error("EVP_PKEY_CTX_set1_hkdf_salt");
+- return 0;
++ goto err;
+ }
+ if (EVP_PKEY_CTX_set1_hkdf_key(pctx, "secret", 6) <= 0) {
+ TEST_error("EVP_PKEY_CTX_set1_hkdf_key");
+- return 0;
++ goto err;
+ }
+ if (EVP_PKEY_CTX_add1_hkdf_info(pctx, "label", 5) <= 0) {
+ TEST_error("EVP_PKEY_CTX_set1_hkdf_info");
+- return 0;
++ goto err;
+ }
+ if (EVP_PKEY_derive(pctx, out, &outlen) <= 0) {
+ TEST_error("EVP_PKEY_derive");
+- return 0;
++ goto err;
+ }
+
+ {
+@@ -94,60 +104,66 @@ static int test_kdf_hkdf(void)
+ 0x2a, 0xc4, 0x36, 0x9f, 0x52, 0x59, 0x96, 0xf8, 0xde, 0x13
+ };
+ if (!TEST_mem_eq(out, sizeof(out), expected, sizeof(expected))) {
+- return 0;
++ goto err;
+ }
+ }
++ ret = 1;
++err:
+ EVP_PKEY_CTX_free(pctx);
+- return 1;
++ return ret;
+ }
+
+ #ifndef OPENSSL_NO_SCRYPT
+ static int test_kdf_scrypt(void)
+ {
++ int ret = 0;
+ EVP_PKEY_CTX *pctx;
+ unsigned char out[64];
+ size_t outlen = sizeof(out);
+- pctx = EVP_PKEY_CTX_new_id(EVP_PKEY_SCRYPT, NULL);
+
++ if ((pctx = EVP_PKEY_CTX_new_id(EVP_PKEY_SCRYPT, NULL)) == NULL) {
++ TEST_error("EVP_PKEY_SCRYPT");
++ goto err;
++ }
+ if (EVP_PKEY_derive_init(pctx) <= 0) {
+ TEST_error("EVP_PKEY_derive_init");
+- return 0;
++ goto err;
+ }
+ if (EVP_PKEY_CTX_set1_pbe_pass(pctx, "password", 8) <= 0) {
+ TEST_error("EVP_PKEY_CTX_set1_pbe_pass");
+- return 0;
++ goto err;
+ }
+ if (EVP_PKEY_CTX_set1_scrypt_salt(pctx, "NaCl", 4) <= 0) {
+ TEST_error("EVP_PKEY_CTX_set1_scrypt_salt");
+- return 0;
++ goto err;
+ }
+ if (EVP_PKEY_CTX_set_scrypt_N(pctx, 1024) <= 0) {
+ TEST_error("EVP_PKEY_CTX_set_scrypt_N");
+- return 0;
++ goto err;
+ }
+ if (EVP_PKEY_CTX_set_scrypt_r(pctx, 8) <= 0) {
+ TEST_error("EVP_PKEY_CTX_set_scrypt_r");
+- return 0;
++ goto err;
+ }
+ if (EVP_PKEY_CTX_set_scrypt_p(pctx, 16) <= 0) {
+ TEST_error("EVP_PKEY_CTX_set_scrypt_p");
+- return 0;
++ goto err;
+ }
+ if (EVP_PKEY_CTX_set_scrypt_maxmem_bytes(pctx, 16) <= 0) {
+ TEST_error("EVP_PKEY_CTX_set_maxmem_bytes");
+- return 0;
++ goto err;
+ }
+ if (EVP_PKEY_derive(pctx, out, &outlen) > 0) {
+ TEST_error("EVP_PKEY_derive should have failed");
+- return 0;
++ goto err;
+ }
+ if (EVP_PKEY_CTX_set_scrypt_maxmem_bytes(pctx, 10 * 1024 * 1024) <= 0) {
+ TEST_error("EVP_PKEY_CTX_set_maxmem_bytes");
+- return 0;
++ goto err;
+ }
+ if (EVP_PKEY_derive(pctx, out, &outlen) <= 0) {
+ TEST_error("EVP_PKEY_derive");
+- return 0;
++ goto err;
+ }
+
+ {
+@@ -162,11 +178,13 @@ static int test_kdf_scrypt(void)
+ 0x83, 0x60, 0xcb, 0xdf, 0xa2, 0xcc, 0x06, 0x40
+ };
+ if (!TEST_mem_eq(out, sizeof(out), expected, sizeof(expected))) {
+- return 0;
++ goto err;
+ }
+ }
++ ret = 1;
++err:
+ EVP_PKEY_CTX_free(pctx);
+- return 1;
++ return ret;
+ }
+ #endif
+
+diff -up openssl-1.1.1b/test/recipes/30-test_evp_data/evpkdf.txt.evp-kdf openssl-1.1.1b/test/recipes/30-test_evp_data/evpkdf.txt
+--- openssl-1.1.1b/test/recipes/30-test_evp_data/evpkdf.txt.evp-kdf 2019-02-26 15:15:30.000000000 +0100
++++ openssl-1.1.1b/test/recipes/30-test_evp_data/evpkdf.txt 2019-02-28 13:05:05.659521326 +0100
+@@ -1,5 +1,5 @@
+ #
+-# Copyright 2001-2017 The OpenSSL Project Authors. All Rights Reserved.
++# Copyright 2001-2018 The OpenSSL Project Authors. All Rights Reserved.
+ #
+ # Licensed under the OpenSSL license (the "License"). You may not use
+ # this file except in compliance with the License. You can obtain a copy
+@@ -15,7 +15,7 @@
+ Title = TLS1 PRF tests (from NIST test vectors)
+
+ KDF=TLS1-PRF
+-Ctrl.md = md:MD5-SHA1
++Ctrl.digest = digest:MD5-SHA1
+ Ctrl.Secret = hexsecret:bded7fa5c1699c010be23dd06ada3a48349f21e5f86263d512c0c5cc379f0e780ec55d9844b2f1db02a96453513568d0
+ Ctrl.label = seed:master secret
+ Ctrl.client_random = hexseed:e5acaf549cd25c22d964c0d930fa4b5261d2507fad84c33715b7b9a864020693
+@@ -23,7 +23,7 @@ Ctrl.server_random = hexseed:135e4d557fd
+ Output = 2f6962dfbc744c4b2138bb6b3d33054c5ecc14f24851d9896395a44ab3964efc2090c5bf51a0891209f46c1e1e998f62
+
+ KDF=TLS1-PRF
+-Ctrl.md = md:MD5-SHA1
++Ctrl.digest = digest:MD5-SHA1
+ Ctrl.Secret = hexsecret:2f6962dfbc744c4b2138bb6b3d33054c5ecc14f24851d9896395a44ab3964efc2090c5bf51a0891209f46c1e1e998f62
+ Ctrl.label = seed:key expansion
+ Ctrl.server_random = hexseed:67267e650eb32444119d222a368c191af3082888dc35afe8368e638c828874be
+@@ -31,7 +31,7 @@ Ctrl.client_random = hexseed:d58a7b1cd4f
+ Output = 3088825988e77fce68d19f756e18e43eb7fe672433504feaf99b3c503d9091b164f166db301d70c9fc0870b4a94563907bee1a61fb786cb717576890bcc51cb9ead97e01d0a2fea99c953377b195205ff07b369589178796edc963fd80fdbe518a2fc1c35c18ae8d
+
+ KDF=TLS1-PRF
+-Ctrl.md = md:SHA256
++Ctrl.digest = digest:SHA256
+ Ctrl.Secret = hexsecret:f8938ecc9edebc5030c0c6a441e213cd24e6f770a50dda07876f8d55da062bcadb386b411fd4fe4313a604fce6c17fbc
+ Ctrl.label = seed:master secret
+ Ctrl.client_random = hexseed:36c129d01a3200894b9179faac589d9835d58775f9b5ea3587cb8fd0364cae8c
+@@ -39,7 +39,7 @@ Ctrl.server_random = hexseed:f6c9575ed7d
+ Output = 202c88c00f84a17a20027079604787461176455539e705be730890602c289a5001e34eeb3a043e5d52a65e66125188bf
+
+ KDF=TLS1-PRF
+-Ctrl.md = md:SHA256
++Ctrl.digest = digest:SHA256
+ Ctrl.Secret = hexsecret:202c88c00f84a17a20027079604787461176455539e705be730890602c289a5001e34eeb3a043e5d52a65e66125188bf
+ Ctrl.label = seed:key expansion
+ Ctrl.server_random = hexseed:ae6c806f8ad4d80784549dff28a4b58fd837681a51d928c3e30ee5ff14f39868
+@@ -48,7 +48,7 @@ Output = d06139889fffac1e3a71865f504aa5d
+
+ # As above but use long name for KDF
+ KDF=tls1-prf
+-Ctrl.md = md:SHA256
++Ctrl.digest = digest:SHA256
+ Ctrl.Secret = hexsecret:202c88c00f84a17a20027079604787461176455539e705be730890602c289a5001e34eeb3a043e5d52a65e66125188bf
+ Ctrl.label = seed:key expansion
+ Ctrl.server_random = hexseed:ae6c806f8ad4d80784549dff28a4b58fd837681a51d928c3e30ee5ff14f39868
+@@ -64,7 +64,7 @@ Result = KDF_DERIVE_ERROR
+
+ # Missing secret.
+ KDF=TLS1-PRF
+-Ctrl.md = md:MD5-SHA1
++Ctrl.digest = digest:MD5-SHA1
+ Ctrl.Seed = hexseed:02
+ Output = 03
+ Result = KDF_DERIVE_ERROR
+@@ -72,7 +72,7 @@ Result = KDF_DERIVE_ERROR
+ Title = HKDF tests (from RFC5869 test vectors)
+
+ KDF = HKDF
+-Ctrl.md = md:SHA256
++Ctrl.digest = digest:SHA256
+ Ctrl.IKM = hexkey:0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b
+ Ctrl.salt = hexsalt:000102030405060708090a0b0c
+ Ctrl.info = hexinfo:f0f1f2f3f4f5f6f7f8f9
+@@ -80,20 +80,20 @@ Output = 3cb25f25faacd57a90434f64d0362f2
+
+ KDF = HKDF
+ Ctrl.mode = mode:EXTRACT_ONLY
+-Ctrl.md = md:SHA256
++Ctrl.digest = digest:SHA256
+ Ctrl.IKM = hexkey:0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b
+ Ctrl.salt = hexsalt:000102030405060708090a0b0c
+ Output = 077709362c2e32df0ddc3f0dc47bba6390b6c73bb50f9c3122ec844ad7c2b3e5
+
+ KDF = HKDF
+ Ctrl.mode = mode:EXPAND_ONLY
+-Ctrl.md = md:SHA256
++Ctrl.digest = digest:SHA256
+ Ctrl.IKM = hexkey:077709362c2e32df0ddc3f0dc47bba6390b6c73bb50f9c3122ec844ad7c2b3e5
+ Ctrl.info = hexinfo:f0f1f2f3f4f5f6f7f8f9
+ Output = 3cb25f25faacd57a90434f64d0362f2a2d2d0a90cf1a5a4c5db02d56ecc4c5bf34007208d5b887185865
+
+ KDF = HKDF
+-Ctrl.md = md:SHA256
++Ctrl.digest = digest:SHA256
+ Ctrl.IKM = hexkey:000102030405060708090a0b0c0d0e0f101112131415161718191a1b1c1d1e1f202122232425262728292a2b2c2d2e2f303132333435363738393a3b3c3d3e3f404142434445464748494a4b4c4d4e4f
+ Ctrl.salt = hexsalt:606162636465666768696a6b6c6d6e6f707172737475767778797a7b7c7d7e7f808182838485868788898a8b8c8d8e8f909192939495969798999a9b9c9d9e9fa0a1a2a3a4a5a6a7a8a9aaabacadaeaf
+ Ctrl.info = hexinfo:b0b1b2b3b4b5b6b7b8b9babbbcbdbebfc0c1c2c3c4c5c6c7c8c9cacbcccdcecfd0d1d2d3d4d5d6d7d8d9dadbdcdddedfe0e1e2e3e4e5e6e7e8e9eaebecedeeeff0f1f2f3f4f5f6f7f8f9fafbfcfdfeff
+@@ -101,20 +101,20 @@ Output = b11e398dc80327a1c8e7f78c596a493
+
+ KDF = HKDF
+ Ctrl.mode = mode:EXTRACT_ONLY
+-Ctrl.md = md:SHA256
++Ctrl.digest = digest:SHA256
+ Ctrl.IKM = hexkey:000102030405060708090a0b0c0d0e0f101112131415161718191a1b1c1d1e1f202122232425262728292a2b2c2d2e2f303132333435363738393a3b3c3d3e3f404142434445464748494a4b4c4d4e4f
+ Ctrl.salt = hexsalt:606162636465666768696a6b6c6d6e6f707172737475767778797a7b7c7d7e7f808182838485868788898a8b8c8d8e8f909192939495969798999a9b9c9d9e9fa0a1a2a3a4a5a6a7a8a9aaabacadaeaf
+ Output = 06a6b88c5853361a06104c9ceb35b45cef760014904671014a193f40c15fc244
+
+ KDF = HKDF
+ Ctrl.mode = mode:EXPAND_ONLY
+-Ctrl.md = md:SHA256
++Ctrl.digest = digest:SHA256
+ Ctrl.IKM = hexkey:06a6b88c5853361a06104c9ceb35b45cef760014904671014a193f40c15fc244
+ Ctrl.info = hexinfo:b0b1b2b3b4b5b6b7b8b9babbbcbdbebfc0c1c2c3c4c5c6c7c8c9cacbcccdcecfd0d1d2d3d4d5d6d7d8d9dadbdcdddedfe0e1e2e3e4e5e6e7e8e9eaebecedeeeff0f1f2f3f4f5f6f7f8f9fafbfcfdfeff
+ Output = b11e398dc80327a1c8e7f78c596a49344f012eda2d4efad8a050cc4c19afa97c59045a99cac7827271cb41c65e590e09da3275600c2f09b8367793a9aca3db71cc30c58179ec3e87c14c01d5c1f3434f1d87
+
+ KDF = HKDF
+-Ctrl.md = md:SHA256
++Ctrl.digest = digest:SHA256
+ Ctrl.IKM = hexkey:0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b
+ Ctrl.salt = salt:
+ Ctrl.info = info:
+@@ -122,7 +122,7 @@ Output = 8da4e775a563c18f715f802a063c5a3
+
+ KDF = HKDF
+ Ctrl.mode = mode:EXTRACT_ONLY
+-Ctrl.md = md:SHA256
++Ctrl.digest = digest:SHA256
+ Ctrl.IKM = hexkey:0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b
+ Ctrl.salt = salt:
+ Ctrl.info = info:
+@@ -130,13 +130,13 @@ Output = 19ef24a32c717b167f33a91d6f648bd
+
+ KDF = HKDF
+ Ctrl.mode = mode:EXPAND_ONLY
+-Ctrl.md = md:SHA256
++Ctrl.digest = digest:SHA256
+ Ctrl.IKM = hexkey:19ef24a32c717b167f33a91d6f648bdf96596776afdb6377ac434c1c293ccb04
+ Ctrl.info = info:
+ Output = 8da4e775a563c18f715f802a063c5a31b8a11f5c5ee1879ec3454e5f3c738d2d9d201395faa4b61a96c8
+
+ KDF = HKDF
+-Ctrl.md = md:SHA1
++Ctrl.digest = digest:SHA1
+ Ctrl.IKM = hexkey:0b0b0b0b0b0b0b0b0b0b0b
+ Ctrl.salt = hexsalt:000102030405060708090a0b0c
+ Ctrl.info = hexinfo:f0f1f2f3f4f5f6f7f8f9
+@@ -144,20 +144,20 @@ Output = 085a01ea1b10f36933068b56efa5ad8
+
+ KDF = HKDF
+ Ctrl.mode = mode:EXTRACT_ONLY
+-Ctrl.md = md:SHA1
++Ctrl.digest = digest:SHA1
+ Ctrl.IKM = hexkey:0b0b0b0b0b0b0b0b0b0b0b
+ Ctrl.salt = hexsalt:000102030405060708090a0b0c
+ Output = 9b6c18c432a7bf8f0e71c8eb88f4b30baa2ba243
+
+ KDF = HKDF
+ Ctrl.mode = mode:EXPAND_ONLY
+-Ctrl.md = md:SHA1
++Ctrl.digest = digest:SHA1
+ Ctrl.IKM = hexkey:9b6c18c432a7bf8f0e71c8eb88f4b30baa2ba243
+ Ctrl.info = hexinfo:f0f1f2f3f4f5f6f7f8f9
+ Output = 085a01ea1b10f36933068b56efa5ad81a4f14b822f5b091568a9cdd4f155fda2c22e422478d305f3f896
+
+ KDF = HKDF
+-Ctrl.md = md:SHA1
++Ctrl.digest = digest:SHA1
+ Ctrl.IKM = hexkey:000102030405060708090a0b0c0d0e0f101112131415161718191a1b1c1d1e1f202122232425262728292a2b2c2d2e2f303132333435363738393a3b3c3d3e3f404142434445464748494a4b4c4d4e4f
+ Ctrl.salt = hexsalt:606162636465666768696a6b6c6d6e6f707172737475767778797a7b7c7d7e7f808182838485868788898a8b8c8d8e8f909192939495969798999a9b9c9d9e9fa0a1a2a3a4a5a6a7a8a9aaabacadaeaf
+ Ctrl.info = hexinfo:b0b1b2b3b4b5b6b7b8b9babbbcbdbebfc0c1c2c3c4c5c6c7c8c9cacbcccdcecfd0d1d2d3d4d5d6d7d8d9dadbdcdddedfe0e1e2e3e4e5e6e7e8e9eaebecedeeeff0f1f2f3f4f5f6f7f8f9fafbfcfdfeff
+@@ -165,20 +165,20 @@ Output = 0bd770a74d1160f7c9f12cd5912a06e
+
+ KDF = HKDF
+ Ctrl.mode = mode:EXTRACT_ONLY
+-Ctrl.md = md:SHA1
++Ctrl.digest = digest:SHA1
+ Ctrl.IKM = hexkey:000102030405060708090a0b0c0d0e0f101112131415161718191a1b1c1d1e1f202122232425262728292a2b2c2d2e2f303132333435363738393a3b3c3d3e3f404142434445464748494a4b4c4d4e4f
+ Ctrl.salt = hexsalt:606162636465666768696a6b6c6d6e6f707172737475767778797a7b7c7d7e7f808182838485868788898a8b8c8d8e8f909192939495969798999a9b9c9d9e9fa0a1a2a3a4a5a6a7a8a9aaabacadaeaf
+ Output = 8adae09a2a307059478d309b26c4115a224cfaf6
+
+ KDF = HKDF
+ Ctrl.mode = mode:EXPAND_ONLY
+-Ctrl.md = md:SHA1
++Ctrl.digest = digest:SHA1
+ Ctrl.IKM = hexkey:8adae09a2a307059478d309b26c4115a224cfaf6
+ Ctrl.info = hexinfo:b0b1b2b3b4b5b6b7b8b9babbbcbdbebfc0c1c2c3c4c5c6c7c8c9cacbcccdcecfd0d1d2d3d4d5d6d7d8d9dadbdcdddedfe0e1e2e3e4e5e6e7e8e9eaebecedeeeff0f1f2f3f4f5f6f7f8f9fafbfcfdfeff
+ Output = 0bd770a74d1160f7c9f12cd5912a06ebff6adcae899d92191fe4305673ba2ffe8fa3f1a4e5ad79f3f334b3b202b2173c486ea37ce3d397ed034c7f9dfeb15c5e927336d0441f4c4300e2cff0d0900b52d3b4
+
+ KDF = HKDF
+-Ctrl.md = md:SHA1
++Ctrl.digest = digest:SHA1
+ Ctrl.IKM = hexkey:0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b
+ Ctrl.salt = salt:
+ Ctrl.info = info:
+@@ -186,20 +186,20 @@ Output = 0ac1af7002b3d761d1e55298da9d050
+
+ KDF = HKDF
+ Ctrl.mode = mode:EXTRACT_ONLY
+-Ctrl.md = md:SHA1
++Ctrl.digest = digest:SHA1
+ Ctrl.IKM = hexkey:0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b
+ Ctrl.salt = salt:
+ Output = da8c8a73c7fa77288ec6f5e7c297786aa0d32d01
+
+ KDF = HKDF
+ Ctrl.mode = mode:EXPAND_ONLY
+-Ctrl.md = md:SHA1
++Ctrl.digest = digest:SHA1
+ Ctrl.IKM = hexkey:da8c8a73c7fa77288ec6f5e7c297786aa0d32d01
+ Ctrl.info = info:
+ Output = 0ac1af7002b3d761d1e55298da9d0506b9ae52057220a306e07b6b87e8df21d0ea00033de03984d34918
+
+ KDF = HKDF
+-Ctrl.md = md:SHA1
++Ctrl.digest = digest:SHA1
+ Ctrl.IKM = hexkey:0c0c0c0c0c0c0c0c0c0c0c0c0c0c0c0c0c0c0c0c0c0c
+ Ctrl.salt = salt:
+ Ctrl.info = info:
+@@ -207,14 +207,14 @@ Output = 2c91117204d745f3500d636a62f64f0
+
+ KDF = HKDF
+ Ctrl.mode = mode:EXTRACT_ONLY
+-Ctrl.md = md:SHA1
++Ctrl.digest = digest:SHA1
+ Ctrl.IKM = hexkey:0c0c0c0c0c0c0c0c0c0c0c0c0c0c0c0c0c0c0c0c0c0c
+ Ctrl.salt = salt:
+ Output = 2adccada18779e7c2077ad2eb19d3f3e731385dd
+
+ KDF = HKDF
+ Ctrl.mode = mode:EXPAND_ONLY
+-Ctrl.md = md:SHA1
++Ctrl.digest = digest:SHA1
+ Ctrl.IKM = hexkey:2adccada18779e7c2077ad2eb19d3f3e731385dd
+ Ctrl.info = info:
+ Output = 2c91117204d745f3500d636a62f64f0ab3bae548aa53d423b0d1f27ebba6f5e5673a081d70cce7acfc48
+@@ -227,27 +227,27 @@ Output = 00
+ Result = KDF_DERIVE_ERROR
+
+ KDF = HKDF
+-Ctrl.md = md:SHA1
++Ctrl.digest = digest:SHA1
+ Ctrl.salt = salt:
+ Ctrl.info = info:
+ Output = 00
+ Result = KDF_DERIVE_ERROR
+
+ KDF = HKDF
+-Ctrl.md = md:SHA1
++Ctrl.digest = digest:SHA1
+ Ctrl.IKM = hexkey:0c0c0c0c0c0c0c0c0c0c0c0c0c0c0c0c0c0c0c0c0c0c
+ Ctrl.info = info:
+ Output = 2c91117204d745f3500d636a62f64f0ab3bae548aa53d423b0d1f27ebba6f5e5673a081d70cce7acfc48
+
+ KDF = HKDF
+-Ctrl.md = md:SHA1
++Ctrl.digest = digest:SHA1
+ Ctrl.IKM = hexkey:0c0c0c0c0c0c0c0c0c0c0c0c0c0c0c0c0c0c0c0c0c0c
+ Ctrl.salt = salt:
+ Output = 2c91117204d745f3500d636a62f64f0ab3bae548aa53d423b0d1f27ebba6f5e5673a081d70cce7acfc48
+
+ KDF = HKDF
+ Ctrl.mode = mode:EXTRACT_AND_EXPAND
+-Ctrl.md = md:SHA1
++Ctrl.digest = digest:SHA1
+ Ctrl.IKM = hexkey:0c0c0c0c0c0c0c0c0c0c0c0c0c0c0c0c0c0c0c0c0c0c
+ Ctrl.salt = salt:
+ Output = 2c91117204d745f3500d636a62f64f0ab3bae548aa53d423b0d1f27ebba6f5e5673a081d70cce7acfc48
+@@ -303,3 +303,133 @@ Ctrl.r = r:8
+ Ctrl.p = p:1
+ Result = INTERNAL_ERROR
+
++Title = PBKDF2 tests
++
++KDF = PBKDF2
++Ctrl.pass = pass:password
++Ctrl.salt = salt:salt
++Ctrl.iter = iter:1
++Ctrl.digest = digest:sha1
++Output = 0c60c80f961f0e71f3a9b524af6012062fe037a6
++
++KDF = PBKDF2
++Ctrl.pass = pass:password
++Ctrl.salt = salt:salt
++Ctrl.iter = iter:1
++Ctrl.digest = digest:sha256
++Output = 120fb6cffcf8b32c43e7225256c4f837a86548c92ccc35480805987cb70be17b
++
++KDF = PBKDF2
++Ctrl.pass = pass:password
++Ctrl.salt = salt:salt
++Ctrl.iter = iter:1
++Ctrl.digest = digest:sha512
++Output = 867f70cf1ade02cff3752599a3a53dc4af34c7a669815ae5d513554e1c8cf252c02d470a285a0501bad999bfe943c08f050235d7d68b1da55e63f73b60a57fce
++
++KDF = PBKDF2
++Ctrl.pass = pass:password
++Ctrl.salt = salt:salt
++Ctrl.iter = iter:2
++Ctrl.digest = digest:sha1
++Output = ea6c014dc72d6f8ccd1ed92ace1d41f0d8de8957
++
++KDF = PBKDF2
++Ctrl.pass = pass:password
++Ctrl.salt = salt:salt
++Ctrl.iter = iter:2
++Ctrl.digest = digest:sha256
++Output = ae4d0c95af6b46d32d0adff928f06dd02a303f8ef3c251dfd6e2d85a95474c43
++
++KDF = PBKDF2
++Ctrl.pass = pass:password
++Ctrl.salt = salt:salt
++Ctrl.iter = iter:2
++Ctrl.digest = digest:sha512
++Output = e1d9c16aa681708a45f5c7c4e215ceb66e011a2e9f0040713f18aefdb866d53cf76cab2868a39b9f7840edce4fef5a82be67335c77a6068e04112754f27ccf4e
++
++KDF = PBKDF2
++Ctrl.pass = pass:password
++Ctrl.salt = salt:salt
++Ctrl.iter = iter:4096
++Ctrl.digest = digest:sha1
++Output = 4b007901b765489abead49d926f721d065a429c1
++
++KDF = PBKDF2
++Ctrl.pass = pass:password
++Ctrl.salt = salt:salt
++Ctrl.iter = iter:4096
++Ctrl.digest = digest:sha256
++Output = c5e478d59288c841aa530db6845c4c8d962893a001ce4e11a4963873aa98134a
++
++KDF = PBKDF2
++Ctrl.pass = pass:password
++Ctrl.salt = salt:salt
++Ctrl.iter = iter:4096
++Ctrl.digest = digest:sha512
++Output = d197b1b33db0143e018b12f3d1d1479e6cdebdcc97c5c0f87f6902e072f457b5143f30602641b3d55cd335988cb36b84376060ecd532e039b742a239434af2d5
++
++KDF = PBKDF2
++Ctrl.pass = pass:passwordPASSWORDpassword
++Ctrl.salt = salt:saltSALTsaltSALTsaltSALTsaltSALTsalt
++Ctrl.iter = iter:4096
++Ctrl.digest = digest:sha1
++Output = 3d2eec4fe41c849b80c8d83662c0e44a8b291a964cf2f07038
++
++KDF = PBKDF2
++Ctrl.pass = pass:passwordPASSWORDpassword
++Ctrl.salt = salt:saltSALTsaltSALTsaltSALTsaltSALTsalt
++Ctrl.iter = iter:4096
++Ctrl.digest = digest:sha256
++Output = 348c89dbcbd32b2f32d814b8116e84cf2b17347ebc1800181c4e2a1fb8dd53e1c635518c7dac47e9
++
++KDF = PBKDF2
++Ctrl.pass = pass:passwordPASSWORDpassword
++Ctrl.salt = salt:saltSALTsaltSALTsaltSALTsaltSALTsalt
++Ctrl.iter = iter:4096
++Ctrl.digest = digest:sha512
++Output = 8c0511f4c6e597c6ac6315d8f0362e225f3c501495ba23b868c005174dc4ee71115b59f9e60cd9532fa33e0f75aefe30225c583a186cd82bd4daea9724a3d3b8
++
++KDF = PBKDF2
++Ctrl.hexpass = hexpass:7061737300776f7264
++Ctrl.hexsalt = hexsalt:7361006c74
++Ctrl.iter = iter:4096
++Ctrl.digest = digest:sha1
++Output = 56fa6aa75548099dcc37d7f03425e0c3
++
++KDF = PBKDF2
++Ctrl.hexpass = hexpass:7061737300776f7264
++Ctrl.hexsalt = hexsalt:7361006c74
++Ctrl.iter = iter:4096
++Ctrl.digest = digest:sha256
++Output = 89b69d0516f829893c696226650a8687
++
++KDF = PBKDF2
++Ctrl.hexpass = hexpass:7061737300776f7264
++Ctrl.hexsalt = hexsalt:7361006c74
++Ctrl.iter = iter:4096
++Ctrl.digest = digest:sha512
++Output = 9d9e9c4cd21fe4be24d5b8244c759665
++
++Title = PBKDF2 tests for empty inputs
++
++KDF = PBKDF2
++Ctrl.pass = pass:
++Ctrl.salt = salt:salt
++Ctrl.iter = iter:1
++Ctrl.digest = digest:sha1
++Output = a33dddc30478185515311f8752895d36ea4363a2
++
++KDF = PBKDF2
++Ctrl.pass = pass:
++Ctrl.salt = salt:salt
++Ctrl.iter = iter:1
++Ctrl.digest = digest:sha256
++Output = f135c27993baf98773c5cdb40a5706ce6a345cde
++
++KDF = PBKDF2
++Ctrl.pass = pass:
++Ctrl.salt = salt:salt
++Ctrl.iter = iter:1
++Ctrl.digest = digest:sha512
++Output = 00ef42cdbfc98d29db20976608e455567fdddf14
++
+diff -up openssl-1.1.1b/test/recipes/30-test_evp_data/evppkey_kdf.txt.evp-kdf openssl-1.1.1b/test/recipes/30-test_evp_data/evppkey_kdf.txt
+--- openssl-1.1.1b/test/recipes/30-test_evp_data/evppkey_kdf.txt.evp-kdf 2019-02-28 13:05:05.659521326 +0100
++++ openssl-1.1.1b/test/recipes/30-test_evp_data/evppkey_kdf.txt 2019-02-28 13:05:05.659521326 +0100
+@@ -0,0 +1,305 @@
++#
++# Copyright 2001-2018 The OpenSSL Project Authors. All Rights Reserved.
++#
++# Licensed under the Apache License 2.0 (the "License"). You may not use
++# this file except in compliance with the License. You can obtain a copy
++# in the file LICENSE in the source distribution or at
++# https://www.openssl.org/source/license.html
++
++# Tests start with one of these keywords
++# Cipher Decrypt Derive Digest Encoding KDF PKEYKDF MAC PBE
++# PrivPubKeyPair Sign Verify VerifyRecover
++# and continue until a blank line. Lines starting with a pound sign,
++# like this prolog, are ignored.
++
++Title = TLS1 PRF tests (from NIST test vectors)
++
++PKEYKDF=TLS1-PRF
++Ctrl.md = md:MD5-SHA1
++Ctrl.Secret = hexsecret:bded7fa5c1699c010be23dd06ada3a48349f21e5f86263d512c0c5cc379f0e780ec55d9844b2f1db02a96453513568d0
++Ctrl.label = seed:master secret
++Ctrl.client_random = hexseed:e5acaf549cd25c22d964c0d930fa4b5261d2507fad84c33715b7b9a864020693
++Ctrl.server_random = hexseed:135e4d557fdf3aa6406d82975d5c606a9734c9334b42136e96990fbd5358cdb2
++Output = 2f6962dfbc744c4b2138bb6b3d33054c5ecc14f24851d9896395a44ab3964efc2090c5bf51a0891209f46c1e1e998f62
++
++PKEYKDF=TLS1-PRF
++Ctrl.md = md:MD5-SHA1
++Ctrl.Secret = hexsecret:2f6962dfbc744c4b2138bb6b3d33054c5ecc14f24851d9896395a44ab3964efc2090c5bf51a0891209f46c1e1e998f62
++Ctrl.label = seed:key expansion
++Ctrl.server_random = hexseed:67267e650eb32444119d222a368c191af3082888dc35afe8368e638c828874be
++Ctrl.client_random = hexseed:d58a7b1cd4fedaa232159df652ce188f9d997e061b9bf48e83b62990440931f6
++Output = 3088825988e77fce68d19f756e18e43eb7fe672433504feaf99b3c503d9091b164f166db301d70c9fc0870b4a94563907bee1a61fb786cb717576890bcc51cb9ead97e01d0a2fea99c953377b195205ff07b369589178796edc963fd80fdbe518a2fc1c35c18ae8d
++
++PKEYKDF=TLS1-PRF
++Ctrl.md = md:SHA256
++Ctrl.Secret = hexsecret:f8938ecc9edebc5030c0c6a441e213cd24e6f770a50dda07876f8d55da062bcadb386b411fd4fe4313a604fce6c17fbc
++Ctrl.label = seed:master secret
++Ctrl.client_random = hexseed:36c129d01a3200894b9179faac589d9835d58775f9b5ea3587cb8fd0364cae8c
++Ctrl.server_random = hexseed:f6c9575ed7ddd73e1f7d16eca115415812a43c2b747daaaae043abfb50053fce
++Output = 202c88c00f84a17a20027079604787461176455539e705be730890602c289a5001e34eeb3a043e5d52a65e66125188bf
++
++PKEYKDF=TLS1-PRF
++Ctrl.md = md:SHA256
++Ctrl.Secret = hexsecret:202c88c00f84a17a20027079604787461176455539e705be730890602c289a5001e34eeb3a043e5d52a65e66125188bf
++Ctrl.label = seed:key expansion
++Ctrl.server_random = hexseed:ae6c806f8ad4d80784549dff28a4b58fd837681a51d928c3e30ee5ff14f39868
++Ctrl.client_random = hexseed:62e1fd91f23f558a605f28478c58cf72637b89784d959df7e946d3f07bd1b616
++Output = d06139889fffac1e3a71865f504aa5d0d2a2e89506c6f2279b670c3e1b74f531016a2530c51a3a0f7e1d6590d0f0566b2f387f8d11fd4f731cdd572d2eae927f6f2f81410b25e6960be68985add6c38445ad9f8c64bf8068bf9a6679485d966f1ad6f68b43495b10a683755ea2b858d70ccac7ec8b053c6bd41ca299d4e51928
++
++# As above but use long name for KDF
++PKEYKDF=tls1-prf
++Ctrl.md = md:SHA256
++Ctrl.Secret = hexsecret:202c88c00f84a17a20027079604787461176455539e705be730890602c289a5001e34eeb3a043e5d52a65e66125188bf
++Ctrl.label = seed:key expansion
++Ctrl.server_random = hexseed:ae6c806f8ad4d80784549dff28a4b58fd837681a51d928c3e30ee5ff14f39868
++Ctrl.client_random = hexseed:62e1fd91f23f558a605f28478c58cf72637b89784d959df7e946d3f07bd1b616
++Output = d06139889fffac1e3a71865f504aa5d0d2a2e89506c6f2279b670c3e1b74f531016a2530c51a3a0f7e1d6590d0f0566b2f387f8d11fd4f731cdd572d2eae927f6f2f81410b25e6960be68985add6c38445ad9f8c64bf8068bf9a6679485d966f1ad6f68b43495b10a683755ea2b858d70ccac7ec8b053c6bd41ca299d4e51928
++
++# Missing digest.
++PKEYKDF=TLS1-PRF
++Ctrl.Secret = hexsecret:01
++Ctrl.Seed = hexseed:02
++Output = 03
++Result = KDF_DERIVE_ERROR
++
++# Missing secret.
++PKEYKDF=TLS1-PRF
++Ctrl.md = md:MD5-SHA1
++Ctrl.Seed = hexseed:02
++Output = 03
++Result = KDF_DERIVE_ERROR
++
++Title = HKDF tests (from RFC5869 test vectors)
++
++PKEYKDF = HKDF
++Ctrl.md = md:SHA256
++Ctrl.IKM = hexkey:0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b
++Ctrl.salt = hexsalt:000102030405060708090a0b0c
++Ctrl.info = hexinfo:f0f1f2f3f4f5f6f7f8f9
++Output = 3cb25f25faacd57a90434f64d0362f2a2d2d0a90cf1a5a4c5db02d56ecc4c5bf34007208d5b887185865
++
++PKEYKDF = HKDF
++Ctrl.mode = mode:EXTRACT_ONLY
++Ctrl.md = md:SHA256
++Ctrl.IKM = hexkey:0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b
++Ctrl.salt = hexsalt:000102030405060708090a0b0c
++Output = 077709362c2e32df0ddc3f0dc47bba6390b6c73bb50f9c3122ec844ad7c2b3e5
++
++PKEYKDF = HKDF
++Ctrl.mode = mode:EXPAND_ONLY
++Ctrl.md = md:SHA256
++Ctrl.IKM = hexkey:077709362c2e32df0ddc3f0dc47bba6390b6c73bb50f9c3122ec844ad7c2b3e5
++Ctrl.info = hexinfo:f0f1f2f3f4f5f6f7f8f9
++Output = 3cb25f25faacd57a90434f64d0362f2a2d2d0a90cf1a5a4c5db02d56ecc4c5bf34007208d5b887185865
++
++PKEYKDF = HKDF
++Ctrl.md = md:SHA256
++Ctrl.IKM = hexkey:000102030405060708090a0b0c0d0e0f101112131415161718191a1b1c1d1e1f202122232425262728292a2b2c2d2e2f303132333435363738393a3b3c3d3e3f404142434445464748494a4b4c4d4e4f
++Ctrl.salt = hexsalt:606162636465666768696a6b6c6d6e6f707172737475767778797a7b7c7d7e7f808182838485868788898a8b8c8d8e8f909192939495969798999a9b9c9d9e9fa0a1a2a3a4a5a6a7a8a9aaabacadaeaf
++Ctrl.info = hexinfo:b0b1b2b3b4b5b6b7b8b9babbbcbdbebfc0c1c2c3c4c5c6c7c8c9cacbcccdcecfd0d1d2d3d4d5d6d7d8d9dadbdcdddedfe0e1e2e3e4e5e6e7e8e9eaebecedeeeff0f1f2f3f4f5f6f7f8f9fafbfcfdfeff
++Output = b11e398dc80327a1c8e7f78c596a49344f012eda2d4efad8a050cc4c19afa97c59045a99cac7827271cb41c65e590e09da3275600c2f09b8367793a9aca3db71cc30c58179ec3e87c14c01d5c1f3434f1d87
++
++PKEYKDF = HKDF
++Ctrl.mode = mode:EXTRACT_ONLY
++Ctrl.md = md:SHA256
++Ctrl.IKM = hexkey:000102030405060708090a0b0c0d0e0f101112131415161718191a1b1c1d1e1f202122232425262728292a2b2c2d2e2f303132333435363738393a3b3c3d3e3f404142434445464748494a4b4c4d4e4f
++Ctrl.salt = hexsalt:606162636465666768696a6b6c6d6e6f707172737475767778797a7b7c7d7e7f808182838485868788898a8b8c8d8e8f909192939495969798999a9b9c9d9e9fa0a1a2a3a4a5a6a7a8a9aaabacadaeaf
++Output = 06a6b88c5853361a06104c9ceb35b45cef760014904671014a193f40c15fc244
++
++PKEYKDF = HKDF
++Ctrl.mode = mode:EXPAND_ONLY
++Ctrl.md = md:SHA256
++Ctrl.IKM = hexkey:06a6b88c5853361a06104c9ceb35b45cef760014904671014a193f40c15fc244
++Ctrl.info = hexinfo:b0b1b2b3b4b5b6b7b8b9babbbcbdbebfc0c1c2c3c4c5c6c7c8c9cacbcccdcecfd0d1d2d3d4d5d6d7d8d9dadbdcdddedfe0e1e2e3e4e5e6e7e8e9eaebecedeeeff0f1f2f3f4f5f6f7f8f9fafbfcfdfeff
++Output = b11e398dc80327a1c8e7f78c596a49344f012eda2d4efad8a050cc4c19afa97c59045a99cac7827271cb41c65e590e09da3275600c2f09b8367793a9aca3db71cc30c58179ec3e87c14c01d5c1f3434f1d87
++
++PKEYKDF = HKDF
++Ctrl.md = md:SHA256
++Ctrl.IKM = hexkey:0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b
++Ctrl.salt = salt:
++Ctrl.info = info:
++Output = 8da4e775a563c18f715f802a063c5a31b8a11f5c5ee1879ec3454e5f3c738d2d9d201395faa4b61a96c8
++
++PKEYKDF = HKDF
++Ctrl.mode = mode:EXTRACT_ONLY
++Ctrl.md = md:SHA256
++Ctrl.IKM = hexkey:0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b
++Ctrl.salt = salt:
++Ctrl.info = info:
++Output = 19ef24a32c717b167f33a91d6f648bdf96596776afdb6377ac434c1c293ccb04
++
++PKEYKDF = HKDF
++Ctrl.mode = mode:EXPAND_ONLY
++Ctrl.md = md:SHA256
++Ctrl.IKM = hexkey:19ef24a32c717b167f33a91d6f648bdf96596776afdb6377ac434c1c293ccb04
++Ctrl.info = info:
++Output = 8da4e775a563c18f715f802a063c5a31b8a11f5c5ee1879ec3454e5f3c738d2d9d201395faa4b61a96c8
++
++PKEYKDF = HKDF
++Ctrl.md = md:SHA1
++Ctrl.IKM = hexkey:0b0b0b0b0b0b0b0b0b0b0b
++Ctrl.salt = hexsalt:000102030405060708090a0b0c
++Ctrl.info = hexinfo:f0f1f2f3f4f5f6f7f8f9
++Output = 085a01ea1b10f36933068b56efa5ad81a4f14b822f5b091568a9cdd4f155fda2c22e422478d305f3f896
++
++PKEYKDF = HKDF
++Ctrl.mode = mode:EXTRACT_ONLY
++Ctrl.md = md:SHA1
++Ctrl.IKM = hexkey:0b0b0b0b0b0b0b0b0b0b0b
++Ctrl.salt = hexsalt:000102030405060708090a0b0c
++Output = 9b6c18c432a7bf8f0e71c8eb88f4b30baa2ba243
++
++PKEYKDF = HKDF
++Ctrl.mode = mode:EXPAND_ONLY
++Ctrl.md = md:SHA1
++Ctrl.IKM = hexkey:9b6c18c432a7bf8f0e71c8eb88f4b30baa2ba243
++Ctrl.info = hexinfo:f0f1f2f3f4f5f6f7f8f9
++Output = 085a01ea1b10f36933068b56efa5ad81a4f14b822f5b091568a9cdd4f155fda2c22e422478d305f3f896
++
++PKEYKDF = HKDF
++Ctrl.md = md:SHA1
++Ctrl.IKM = hexkey:000102030405060708090a0b0c0d0e0f101112131415161718191a1b1c1d1e1f202122232425262728292a2b2c2d2e2f303132333435363738393a3b3c3d3e3f404142434445464748494a4b4c4d4e4f
++Ctrl.salt = hexsalt:606162636465666768696a6b6c6d6e6f707172737475767778797a7b7c7d7e7f808182838485868788898a8b8c8d8e8f909192939495969798999a9b9c9d9e9fa0a1a2a3a4a5a6a7a8a9aaabacadaeaf
++Ctrl.info = hexinfo:b0b1b2b3b4b5b6b7b8b9babbbcbdbebfc0c1c2c3c4c5c6c7c8c9cacbcccdcecfd0d1d2d3d4d5d6d7d8d9dadbdcdddedfe0e1e2e3e4e5e6e7e8e9eaebecedeeeff0f1f2f3f4f5f6f7f8f9fafbfcfdfeff
++Output = 0bd770a74d1160f7c9f12cd5912a06ebff6adcae899d92191fe4305673ba2ffe8fa3f1a4e5ad79f3f334b3b202b2173c486ea37ce3d397ed034c7f9dfeb15c5e927336d0441f4c4300e2cff0d0900b52d3b4
++
++PKEYKDF = HKDF
++Ctrl.mode = mode:EXTRACT_ONLY
++Ctrl.md = md:SHA1
++Ctrl.IKM = hexkey:000102030405060708090a0b0c0d0e0f101112131415161718191a1b1c1d1e1f202122232425262728292a2b2c2d2e2f303132333435363738393a3b3c3d3e3f404142434445464748494a4b4c4d4e4f
++Ctrl.salt = hexsalt:606162636465666768696a6b6c6d6e6f707172737475767778797a7b7c7d7e7f808182838485868788898a8b8c8d8e8f909192939495969798999a9b9c9d9e9fa0a1a2a3a4a5a6a7a8a9aaabacadaeaf
++Output = 8adae09a2a307059478d309b26c4115a224cfaf6
++
++PKEYKDF = HKDF
++Ctrl.mode = mode:EXPAND_ONLY
++Ctrl.md = md:SHA1
++Ctrl.IKM = hexkey:8adae09a2a307059478d309b26c4115a224cfaf6
++Ctrl.info = hexinfo:b0b1b2b3b4b5b6b7b8b9babbbcbdbebfc0c1c2c3c4c5c6c7c8c9cacbcccdcecfd0d1d2d3d4d5d6d7d8d9dadbdcdddedfe0e1e2e3e4e5e6e7e8e9eaebecedeeeff0f1f2f3f4f5f6f7f8f9fafbfcfdfeff
++Output = 0bd770a74d1160f7c9f12cd5912a06ebff6adcae899d92191fe4305673ba2ffe8fa3f1a4e5ad79f3f334b3b202b2173c486ea37ce3d397ed034c7f9dfeb15c5e927336d0441f4c4300e2cff0d0900b52d3b4
++
++PKEYKDF = HKDF
++Ctrl.md = md:SHA1
++Ctrl.IKM = hexkey:0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b
++Ctrl.salt = salt:
++Ctrl.info = info:
++Output = 0ac1af7002b3d761d1e55298da9d0506b9ae52057220a306e07b6b87e8df21d0ea00033de03984d34918
++
++PKEYKDF = HKDF
++Ctrl.mode = mode:EXTRACT_ONLY
++Ctrl.md = md:SHA1
++Ctrl.IKM = hexkey:0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b
++Ctrl.salt = salt:
++Output = da8c8a73c7fa77288ec6f5e7c297786aa0d32d01
++
++PKEYKDF = HKDF
++Ctrl.mode = mode:EXPAND_ONLY
++Ctrl.md = md:SHA1
++Ctrl.IKM = hexkey:da8c8a73c7fa77288ec6f5e7c297786aa0d32d01
++Ctrl.info = info:
++Output = 0ac1af7002b3d761d1e55298da9d0506b9ae52057220a306e07b6b87e8df21d0ea00033de03984d34918
++
++PKEYKDF = HKDF
++Ctrl.md = md:SHA1
++Ctrl.IKM = hexkey:0c0c0c0c0c0c0c0c0c0c0c0c0c0c0c0c0c0c0c0c0c0c
++Ctrl.salt = salt:
++Ctrl.info = info:
++Output = 2c91117204d745f3500d636a62f64f0ab3bae548aa53d423b0d1f27ebba6f5e5673a081d70cce7acfc48
++
++PKEYKDF = HKDF
++Ctrl.mode = mode:EXTRACT_ONLY
++Ctrl.md = md:SHA1
++Ctrl.IKM = hexkey:0c0c0c0c0c0c0c0c0c0c0c0c0c0c0c0c0c0c0c0c0c0c
++Ctrl.salt = salt:
++Output = 2adccada18779e7c2077ad2eb19d3f3e731385dd
++
++PKEYKDF = HKDF
++Ctrl.mode = mode:EXPAND_ONLY
++Ctrl.md = md:SHA1
++Ctrl.IKM = hexkey:2adccada18779e7c2077ad2eb19d3f3e731385dd
++Ctrl.info = info:
++Output = 2c91117204d745f3500d636a62f64f0ab3bae548aa53d423b0d1f27ebba6f5e5673a081d70cce7acfc48
++
++PKEYKDF = HKDF
++Ctrl.IKM = hexkey:0c0c0c0c0c0c0c0c0c0c0c0c0c0c0c0c0c0c0c0c0c0c
++Ctrl.salt = salt:
++Ctrl.info = info:
++Output = 00
++Result = KDF_DERIVE_ERROR
++
++PKEYKDF = HKDF
++Ctrl.md = md:SHA1
++Ctrl.salt = salt:
++Ctrl.info = info:
++Output = 00
++Result = KDF_DERIVE_ERROR
++
++PKEYKDF = HKDF
++Ctrl.md = md:SHA1
++Ctrl.IKM = hexkey:0c0c0c0c0c0c0c0c0c0c0c0c0c0c0c0c0c0c0c0c0c0c
++Ctrl.info = info:
++Output = 2c91117204d745f3500d636a62f64f0ab3bae548aa53d423b0d1f27ebba6f5e5673a081d70cce7acfc48
++
++PKEYKDF = HKDF
++Ctrl.md = md:SHA1
++Ctrl.IKM = hexkey:0c0c0c0c0c0c0c0c0c0c0c0c0c0c0c0c0c0c0c0c0c0c
++Ctrl.salt = salt:
++Output = 2c91117204d745f3500d636a62f64f0ab3bae548aa53d423b0d1f27ebba6f5e5673a081d70cce7acfc48
++
++PKEYKDF = HKDF
++Ctrl.mode = mode:EXTRACT_AND_EXPAND
++Ctrl.md = md:SHA1
++Ctrl.IKM = hexkey:0c0c0c0c0c0c0c0c0c0c0c0c0c0c0c0c0c0c0c0c0c0c
++Ctrl.salt = salt:
++Output = 2c91117204d745f3500d636a62f64f0ab3bae548aa53d423b0d1f27ebba6f5e5673a081d70cce7acfc48
++
++Title = id-scrypt tests (from draft-josefsson-id-scrypt-kdf-03 and others)
++
++PKEYKDF = scrypt
++Ctrl.pass = pass:
++Ctrl.salt = salt:
++Ctrl.N = N:16
++Ctrl.r = r:1
++Ctrl.p = p:1
++Output = 77d6576238657b203b19ca42c18a0497f16b4844e3074ae8dfdffa3fede21442fcd0069ded0948f8326a753a0fc81f17e8d3e0fb2e0d3628cf35e20c38d18906
++
++PKEYKDF = scrypt
++Ctrl.pass = pass:password
++Ctrl.salt = salt:NaCl
++Ctrl.N = N:1024
++Ctrl.r = r:8
++Ctrl.p = p:16
++Output = fdbabe1c9d3472007856e7190d01e9fe7c6ad7cbc8237830e77376634b3731622eaf30d92e22a3886ff109279d9830dac727afb94a83ee6d8360cbdfa2cc0640
++
++PKEYKDF = scrypt
++Ctrl.hexpass = hexpass:70617373776f7264
++Ctrl.salt = salt:NaCl
++Ctrl.N = N:1024
++Ctrl.r = r:8
++Ctrl.p = p:16
++Output = fdbabe1c9d3472007856e7190d01e9fe7c6ad7cbc8237830e77376634b3731622eaf30d92e22a3886ff109279d9830dac727afb94a83ee6d8360cbdfa2cc0640
++
++PKEYKDF = scrypt
++Ctrl.pass = pass:password
++Ctrl.hexsalt = hexsalt:4e61436c
++Ctrl.N = N:1024
++Ctrl.r = r:8
++Ctrl.p = p:16
++Output = fdbabe1c9d3472007856e7190d01e9fe7c6ad7cbc8237830e77376634b3731622eaf30d92e22a3886ff109279d9830dac727afb94a83ee6d8360cbdfa2cc0640
++
++PKEYKDF = scrypt
++Ctrl.pass = pass:pleaseletmein
++Ctrl.salt = salt:SodiumChloride
++Ctrl.N = N:16384
++Ctrl.r = r:8
++Ctrl.p = p:1
++Output = 7023bdcb3afd7348461c06cd81fd38ebfda8fbba904f8e3ea9b543f6545da1f2d5432955613f0fcf62d49705242a9af9e61e85dc0d651e40dfcf017b45575887
++
++# Out of memory
++PKEYKDF = scrypt
++Ctrl.pass = pass:pleaseletmein
++Ctrl.salt = salt:SodiumChloride
++Ctrl.N = N:1048576
++Ctrl.r = r:8
++Ctrl.p = p:1
++Result = INTERNAL_ERROR
++
+diff -up openssl-1.1.1b/test/recipes/30-test_evp_kdf.t.evp-kdf openssl-1.1.1b/test/recipes/30-test_evp_kdf.t
+--- openssl-1.1.1b/test/recipes/30-test_evp_kdf.t.evp-kdf 2019-02-28 13:05:05.659521326 +0100
++++ openssl-1.1.1b/test/recipes/30-test_evp_kdf.t 2019-02-28 13:05:05.659521326 +0100
+@@ -0,0 +1,13 @@
++#! /usr/bin/env perl
++# Copyright 2018 The OpenSSL Project Authors. All Rights Reserved.
++# Copyright (c) 2018, Oracle and/or its affiliates. All rights reserved.
++#
++# Licensed under the Apache License 2.0 (the "License"). You may not use
++# this file except in compliance with the License. You can obtain a copy
++# in the file LICENSE in the source distribution or at
++# https://www.openssl.org/source/license.html
++
++
++use OpenSSL::Test::Simple;
++
++simple_test("test_evp_kdf", "evp_kdf_test");
+diff -up openssl-1.1.1c/test/recipes/30-test_evp.t.evp-kdf openssl-1.1.1c/test/recipes/30-test_evp.t
+--- openssl-1.1.1c/test/recipes/30-test_evp.t.evp-kdf 2019-05-29 16:55:38.236960543 +0200
++++ openssl-1.1.1c/test/recipes/30-test_evp.t 2019-05-29 16:57:46.348718012 +0200
+@@ -15,7 +15,7 @@ use OpenSSL::Test qw/:DEFAULT data_file/
+ setup("test_evp");
+
+ my @files = ( "evpciph.txt", "evpdigest.txt", "evpencod.txt", "evpkdf.txt",
+- "evpmac.txt", "evppbe.txt", "evppkey.txt", "evppkey_ecc.txt",
++ "evppkey_kdf.txt", "evpmac.txt", "evppbe.txt", "evppkey.txt", "evppkey_ecc.txt",
+ "evpcase.txt", "evpccmcavs.txt" );
+
+ plan tests => scalar(@files);
+
+diff -up openssl-1.1.1b/util/libcrypto.num.evp-kdf openssl-1.1.1b/util/libcrypto.num
+--- openssl-1.1.1b/util/libcrypto.num.evp-kdf 2019-02-28 13:05:05.636521752 +0100
++++ openssl-1.1.1b/util/libcrypto.num 2019-02-28 13:05:05.660521308 +0100
+@@ -4614,3 +4614,11 @@ FIPS_drbg_get_strength
+ FIPS_rand_strength 6380 1_1_0g EXIST::FUNCTION:
+ FIPS_drbg_get_blocklength 6381 1_1_0g EXIST::FUNCTION:
+ FIPS_drbg_init 6382 1_1_0g EXIST::FUNCTION:
++EVP_KDF_CTX_new_id 6590 1_1_1b EXIST::FUNCTION:
++EVP_KDF_CTX_free 6591 1_1_1b EXIST::FUNCTION:
++EVP_KDF_reset 6592 1_1_1b EXIST::FUNCTION:
++EVP_KDF_ctrl 6593 1_1_1b EXIST::FUNCTION:
++EVP_KDF_vctrl 6594 1_1_1b EXIST::FUNCTION:
++EVP_KDF_ctrl_str 6595 1_1_1b EXIST::FUNCTION:
++EVP_KDF_size 6596 1_1_1b EXIST::FUNCTION:
++EVP_KDF_derive 6597 1_1_1b EXIST::FUNCTION:
+diff -up openssl-1.1.1b/util/private.num.evp-kdf openssl-1.1.1b/util/private.num
+--- openssl-1.1.1b/util/private.num.evp-kdf 2019-02-26 15:15:30.000000000 +0100
++++ openssl-1.1.1b/util/private.num 2019-02-28 13:05:05.660521308 +0100
+@@ -21,6 +21,7 @@ CRYPTO_EX_dup
+ CRYPTO_EX_free datatype
+ CRYPTO_EX_new datatype
+ DTLS_timer_cb datatype
++EVP_KDF_CTX datatype
+ EVP_PKEY_gen_cb datatype
+ EVP_PKEY_METHOD datatype
+ EVP_PKEY_ASN1_METHOD datatype
bgstack15