summaryrefslogtreecommitdiff
path: root/zen/string_base.h
blob: 914e04343542f7287686e9adcd47296f26c0817c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
// **************************************************************************
// * This file is part of the FreeFileSync project. It is distributed under *
// * GNU General Public License: http://www.gnu.org/licenses/gpl.html       *
// * Copyright (C) 2008-2011 ZenJu (zhnmju123 AT gmx.de)                    *
// **************************************************************************

#ifndef Z_BASE_H_INCLUDED
#define Z_BASE_H_INCLUDED

#include <algorithm>
#include <cassert>
#include "string_tools.h"
#include <boost/detail/atomic_count.hpp>

//Zbase - a policy based string class


/*
Allocator Policy:
-----------------
    void* allocate(size_t size) //throw (std::bad_alloc)
    void deallocate(void* ptr)
    size_t calcCapacity(size_t length)
*/
class AllocatorOptimalSpeed //exponential growth + min size
{
public:
    //::operator new/ ::operator delete show same performance characterisics like malloc()/free()!
    static void* allocate(size_t size) { return ::operator new(size); } //throw (std::bad_alloc)
    static void  deallocate(void* ptr) { ::operator delete(ptr); }
    static size_t calcCapacity(size_t length) { return std::max<size_t>(16, length + length / 2); }
};


class AllocatorOptimalMemory //no wasted memory, but more reallocations required when manipulating string
{
public:
    static void* allocate(size_t size) { return ::operator new(size); } //throw (std::bad_alloc)
    static void  deallocate(void* ptr) { ::operator delete(ptr); }
    static size_t calcCapacity(size_t length) { return length; }
};

/*
Storage Policy:
---------------
template <typename T, //Character Type
         class AP>    //Allocator Policy

    T* create(size_t size)
    T* create(size_t size, size_t minCapacity)
    T* clone(T* ptr)
    void destroy(T* ptr)
    bool canWrite(const T* ptr, size_t minCapacity) //needs to be checked before writing to "ptr"
    size_t length(const T* ptr)
    void setLength(T* ptr, size_t newLength)
*/

template <typename T, //Character Type
         class AP>   //Allocator Policy
class StorageDeepCopy : public AP
{
protected:
    ~StorageDeepCopy() {}

    static T* create(size_t size) { return create(size, size); }
    static T* create(size_t size, size_t minCapacity)
    {
        const size_t newCapacity = AP::calcCapacity(minCapacity);
        assert(newCapacity >= minCapacity);
        assert(minCapacity >= size);

        Descriptor* const newDescr = static_cast<Descriptor*>(AP::allocate(sizeof(Descriptor) + (newCapacity + 1) * sizeof(T)));

        newDescr->length   = size;
        newDescr->capacity = newCapacity;

        return reinterpret_cast<T*>(newDescr + 1);
    }

    static T* clone(T* ptr)
    {
        T* newData = create(length(ptr));
        std::copy(ptr, ptr + length(ptr) + 1, newData);
        return newData;
    }

    static void destroy(T* ptr) { AP::deallocate(descr(ptr)); }

    //this needs to be checked before writing to "ptr"
    static bool canWrite(const T* ptr, size_t minCapacity) { return minCapacity <= descr(ptr)->capacity; }
    static size_t length(const T* ptr) { return descr(ptr)->length; }

    static void setLength(T* ptr, size_t newLength)
    {
        assert(canWrite(ptr, newLength));
        descr(ptr)->length = newLength;
    }

private:
    struct Descriptor
    {
        size_t length;
        size_t capacity; //allocated size without null-termination
    };

    static       Descriptor* descr(      T* ptr) { return reinterpret_cast<      Descriptor*>(ptr) - 1; }
    static const Descriptor* descr(const T* ptr) { return reinterpret_cast<const Descriptor*>(ptr) - 1; }
};


template <typename T, //Character Type
         class AP>   //Allocator Policy
class StorageRefCountThreadSafe : public AP
{
protected:
    ~StorageRefCountThreadSafe() {}

    static T* create(size_t size)
    {
        return create(size, size);
    }

    static T* create(size_t size, size_t minCapacity)
    {
        const size_t newCapacity = AP::calcCapacity(minCapacity);
        assert(newCapacity >= minCapacity);
        assert(minCapacity >= size);

        Descriptor* const newDescr = static_cast<Descriptor*>(AP::allocate(sizeof(Descriptor) + (newCapacity + 1) * sizeof(T)));
        new (newDescr) Descriptor(1, size, newCapacity);

        return reinterpret_cast<T*>(newDescr + 1);
    }

    static T* clone(T* ptr)
    {
        assert(descr(ptr)->refCount > 0);
        ++descr(ptr)->refCount;
        return ptr;
    }

    static void destroy(T* ptr)
    {
        if (--descr(ptr)->refCount == 0)
        {
            descr(ptr)->~Descriptor();
            AP::deallocate(descr(ptr));
        }
    }

    static bool canWrite(const T* ptr, size_t minCapacity) //needs to be checked before writing to "ptr"
    {
        assert(descr(ptr)->refCount > 0);
        return descr(ptr)->refCount == 1 && minCapacity <= descr(ptr)->capacity;
    }

    static size_t length(const T* ptr)
    {
        return descr(ptr)->length;
    }

    static void setLength(T* ptr, size_t newLength)
    {
        assert(canWrite(ptr, newLength));
        descr(ptr)->length = newLength;
    }

private:
    struct Descriptor
    {
        Descriptor(long rc, size_t len, size_t cap) : refCount(rc), length(len), capacity(cap) {}

        boost::detail::atomic_count refCount; //practically no perf loss: ~0.2%! (FFS comparison)
        size_t length;
        size_t capacity; //allocated size without null-termination
    };

    static       Descriptor* descr(      T* ptr) { return reinterpret_cast<      Descriptor*>(ptr) - 1; }
    static const Descriptor* descr(const T* ptr) { return reinterpret_cast<const Descriptor*>(ptr) - 1; }
};
//################################################################################################################################################################


//perf note: interstingly StorageDeepCopy and StorageRefCountThreadSafe show same performance in FFS comparison

template <class T,									                  //Character Type
         template <class, class> class SP = StorageRefCountThreadSafe, //Storage Policy
         class AP = AllocatorOptimalSpeed>				              //Allocator Policy
class Zbase : public SP<T, AP>
{
public:
    Zbase();
    Zbase(const T* source); //implicit conversion from a C-string
    Zbase(const T* source, size_t length);
    Zbase(const Zbase& source);
    Zbase(Zbase&& tmp);
    explicit Zbase(T source); //dangerous if implicit: T buffer[]; Zbase name = buffer; ups...
    //allow explicit construction from different string type, prevent ambiguity via SFINAE
    template <class S> explicit Zbase(const S& other, typename S::value_type = 0);
    ~Zbase();

    //operator const T* () const; //NO implicit conversion to a C-string!! Many problems... one of them: if we forget to provide operator overloads, it'll just work with a T*...

    //STL accessors
    typedef       T*       iterator;
    typedef const T* const_iterator;
    typedef       T&       reference;
    typedef const T& const_reference;
    typedef       T value_type;
    const T* begin() const;
    const T* end()   const;
    T*       begin();
    T*       end();

    //std::string functions
    size_t length() const;
    size_t size() const;
    const T* c_str() const; //C-string format with NULL-termination
    const T* data()  const; //internal representation, NULL-termination not guaranteed
    const T operator[](size_t pos) const;
    bool empty() const;
    void clear();
    size_t find(const Zbase& str, size_t pos = 0)    const; //
    size_t find(const T* str,     size_t pos = 0)    const; //returns "npos" if not found
    size_t find(T ch,             size_t pos = 0)    const; //
    size_t rfind(T ch,            size_t pos = npos) const; //
    size_t rfind(const T* str,    size_t pos = npos) const; //
    Zbase& replace(size_t pos1, size_t n1, const Zbase& str);
    void reserve(size_t minCapacity);
    Zbase& assign(const T* source, size_t len);
    void resize(size_t newSize, T fillChar = 0);
    void swap(Zbase& other);
    void push_back(T val); //STL access

    Zbase& operator=(const Zbase& source);
    Zbase& operator=(Zbase&& tmp);
    Zbase& operator=(const T* source);
    Zbase& operator=(T source);
    Zbase& operator+=(const Zbase& other);
    Zbase& operator+=(const T* other);
    Zbase& operator+=(T ch);

    static const size_t	npos = static_cast<size_t>(-1);

private:
    Zbase(int);            //detect usage errors
    Zbase& operator=(int); //

    T* rawStr;
};

template <class T, template <class, class> class SP, class AP> bool operator==(const Zbase<T, SP, AP>& lhs, const Zbase<T, SP, AP>& rhs);
template <class T, template <class, class> class SP, class AP> bool operator==(const Zbase<T, SP, AP>& lhs, const T*                rhs);
template <class T, template <class, class> class SP, class AP> bool operator==(const T*                lhs, const Zbase<T, SP, AP>& rhs);

template <class T, template <class, class> class SP, class AP> bool operator!=(const Zbase<T, SP, AP>& lhs, const Zbase<T, SP, AP>& rhs);
template <class T, template <class, class> class SP, class AP> bool operator!=(const Zbase<T, SP, AP>& lhs, const T*                rhs);
template <class T, template <class, class> class SP, class AP> bool operator!=(const T*                lhs, const Zbase<T, SP, AP>& rhs);

template <class T, template <class, class> class SP, class AP> bool operator< (const Zbase<T, SP, AP>& lhs, const Zbase<T, SP, AP>& rhs);
template <class T, template <class, class> class SP, class AP> bool operator< (const Zbase<T, SP, AP>& lhs, const T*                rhs);
template <class T, template <class, class> class SP, class AP> bool operator< (const T*                lhs, const Zbase<T, SP, AP>& rhs);

template <class T, template <class, class> class SP, class AP> const Zbase<T, SP, AP> operator+(const Zbase<T, SP, AP>& lhs, const Zbase<T, SP, AP>& rhs);
template <class T, template <class, class> class SP, class AP> const Zbase<T, SP, AP> operator+(const Zbase<T, SP, AP>& lhs, const T*                rhs);
template <class T, template <class, class> class SP, class AP> const Zbase<T, SP, AP> operator+(const T*                lhs, const Zbase<T, SP, AP>& rhs);
template <class T, template <class, class> class SP, class AP> const Zbase<T, SP, AP> operator+(      T                 lhs, const Zbase<T, SP, AP>& rhs);
template <class T, template <class, class> class SP, class AP> const Zbase<T, SP, AP> operator+(const Zbase<T, SP, AP>& lhs,       T                 rhs);





































//################################# inline implementation ########################################
template <class T, template <class, class> class SP, class AP> inline
Zbase<T, SP, AP>::Zbase()
{
    //resist the temptation to avoid this allocation by referening a static global: NO performance advantage, MT issues!
    rawStr    = this->create(0);
    rawStr[0] = 0;
}


template <class T, template <class, class> class SP, class AP> inline
Zbase<T, SP, AP>::Zbase(T source)
{
    rawStr    = this->create(1);
    rawStr[0] = source;
    rawStr[1] = 0;
}


template <class T, template <class, class> class SP, class AP> inline
Zbase<T, SP, AP>::Zbase(const T* source)
{
    const size_t sourceLen = zen::strLength(source);
    rawStr = this->create(sourceLen);
    std::copy(source, source + sourceLen + 1, rawStr); //include null-termination
}


template <class T, template <class, class> class SP, class AP> inline
Zbase<T, SP, AP>::Zbase(const T* source, size_t sourceLen)
{
    rawStr = this->create(sourceLen);
    std::copy(source, source + sourceLen, rawStr);
    rawStr[sourceLen] = 0;
}


template <class T, template <class, class> class SP, class AP> inline
Zbase<T, SP, AP>::Zbase(const Zbase<T, SP, AP>& source)
{
    rawStr = this->clone(source.rawStr);
}


template <class T, template <class, class> class SP, class AP> inline
Zbase<T, SP, AP>::Zbase(Zbase<T, SP, AP>&& tmp)
{
    rawStr = this->clone(tmp.rawStr); //for a ref-counting string there probably isn't a faster way, even with r-value references
}


template <class T, template <class, class> class SP, class AP>
template <class S> inline
Zbase<T, SP, AP>::Zbase(const S& other, typename S::value_type)
{
    const size_t sourceLen = other.size();
    rawStr = this->create(sourceLen);
    std::copy(other.c_str(), other.c_str() + sourceLen, rawStr);
    rawStr[sourceLen] = 0;
}


template <class T, template <class, class> class SP, class AP> inline
Zbase<T, SP, AP>::~Zbase()
{
    this->destroy(rawStr);
}


template <class T, template <class, class> class SP, class AP> inline
size_t Zbase<T, SP, AP>::find(const Zbase& str, size_t pos) const
{
    assert(pos <= length());
    const T* thisEnd = end(); //respect embedded 0
    const T* iter = std::search(begin() + pos, thisEnd,
                                str.begin(), str.end());
    return iter == thisEnd ? npos : iter - begin();
}


template <class T, template <class, class> class SP, class AP> inline
size_t Zbase<T, SP, AP>::find(const T* str, size_t pos) const
{
    assert(pos <= length());
    const T* thisEnd = end(); //respect embedded 0
    const T* iter = std::search(begin() + pos, thisEnd,
                                str, str + zen::strLength(str));
    return iter == thisEnd ? npos : iter - begin();
}


template <class T, template <class, class> class SP, class AP> inline
size_t Zbase<T, SP, AP>::find(T ch, size_t pos) const
{
    assert(pos <= length());
    const T* thisEnd = end();
    const T* iter = std::find(begin() + pos, thisEnd, ch); //respect embedded 0
    return iter == thisEnd ? npos : iter - begin();
}


template <class T, template <class, class> class SP, class AP> inline
size_t Zbase<T, SP, AP>::rfind(T ch, size_t pos) const
{
    assert(pos == npos || pos <= length());

    const size_t thisLen = length();
    if (thisLen == 0) return npos;
    pos = std::min(thisLen - 1, pos); //handle "npos" and "pos == length()" implicitly

    while (rawStr[pos] != ch) //pos points to last char of the string
    {
        if (pos == 0)
            return npos;
        --pos;
    }
    return pos;
}


template <class T, template <class, class> class SP, class AP> inline
size_t Zbase<T, SP, AP>::rfind(const T* str, size_t pos) const
{
    assert(pos == npos || pos <= length());

    const size_t strLen = zen::strLength(str);
    const T* currEnd = pos == npos ? end() : begin() + std::min(pos + strLen, length());

    const T* iter = std::find_end(begin(), currEnd,
                                  str, str + strLen);
    return iter == currEnd ? npos : iter - begin();
}


template <class T, template <class, class> class SP, class AP>
Zbase<T, SP, AP>& Zbase<T, SP, AP>::replace(size_t pos1, size_t n1, const Zbase& str)
{
    assert(str.data() < rawStr || rawStr + length() < str.data()); //str mustn't point to data in this string
    assert(pos1 + n1 <= length());

    const size_t n2 = str.length();

    const size_t oldLen = length();
    if (oldLen == 0)
        return *this = str;

    const size_t newLen = oldLen - n1 + n2;

    if (canWrite(rawStr, newLen))
    {
        if (n1 < n2) //move remainder right -> std::copy_backward
        {
            std::copy_backward(rawStr + pos1 + n1, rawStr + oldLen + 1, rawStr + newLen + 1); //include null-termination
            setLength(rawStr, newLen);
        }
        else if (n1 > n2) //shift left -> std::copy
        {
            std::copy(rawStr + pos1 + n1, rawStr + oldLen + 1, rawStr + pos1 + n2); //include null-termination
            setLength(rawStr, newLen);
        }

        std::copy(str.data(), str.data() + n2, rawStr + pos1);
    }
    else
    {
        //copy directly into new string
        T* const newStr = this->create(newLen);

        std::copy(rawStr, rawStr + pos1, newStr);
        std::copy(str.data(), str.data() + n2, newStr + pos1);
        std::copy(rawStr + pos1 + n1, rawStr + oldLen + 1, newStr + pos1 + n2); //include null-termination

        destroy(rawStr);
        rawStr = newStr;
    }
    return *this;
}


template <class T, template <class, class> class SP, class AP> inline
void Zbase<T, SP, AP>::resize(size_t newSize, T fillChar)
{
    if (canWrite(rawStr, newSize))
    {
        if (length() < newSize)
            std::fill(rawStr + length(), rawStr + newSize, fillChar);
        rawStr[newSize] = 0;
        setLength(rawStr, newSize); //keep after call to length()
    }
    else
    {
        T* newStr = this->create(newSize);
        newStr[newSize] = 0;

        if (length() < newSize)
        {
            std::copy(rawStr, rawStr + length(), newStr);
            std::fill(newStr + length(), newStr + newSize, fillChar);
        }
        else
            std::copy(rawStr, rawStr + newSize, newStr);

        destroy(rawStr);
        rawStr = newStr;
    }
}


template <class T, template <class, class> class SP, class AP> inline
bool operator==(const Zbase<T, SP, AP>& lhs, const Zbase<T, SP, AP>& rhs)
{
    return lhs.length() == rhs.length() && std::equal(lhs.begin(), lhs.end(), rhs.begin()); //respect embedded 0
}


template <class T, template <class, class> class SP, class AP> inline
bool operator==(const Zbase<T, SP, AP>& lhs, const T* rhs)
{
    return lhs.length() == zen::strLength(rhs) && std::equal(lhs.begin(), lhs.end(), rhs); //respect embedded 0
}


template <class T, template <class, class> class SP, class AP> inline
bool operator==(const T* lhs, const Zbase<T, SP, AP>& rhs)
{
    return operator==(rhs, lhs);
}


template <class T, template <class, class> class SP, class AP> inline
bool operator!=(const Zbase<T, SP, AP>& lhs, const Zbase<T, SP, AP>& rhs)
{
    return !operator==(lhs, rhs);
}


template <class T, template <class, class> class SP, class AP> inline
bool operator!=(const Zbase<T, SP, AP>& lhs, const T* rhs)
{
    return !operator==(lhs, rhs);
}


template <class T, template <class, class> class SP, class AP> inline
bool operator!=(const T* lhs, const Zbase<T, SP, AP>& rhs)
{
    return !operator==(lhs, rhs);
}


template <class T, template <class, class> class SP, class AP> inline
bool operator<(const Zbase<T, SP, AP>& lhs, const Zbase<T, SP, AP>& rhs)
{
    return std::lexicographical_compare(lhs.begin(), lhs.end(), //respect embedded 0
                                        rhs.begin(), rhs.end());
}


template <class T, template <class, class> class SP, class AP> inline
bool operator<(const Zbase<T, SP, AP>& lhs, const T* rhs)
{
    return std::lexicographical_compare(lhs.begin(), lhs.end(), //respect embedded 0
                                        rhs, rhs + zen::strLength(rhs));
}


template <class T, template <class, class> class SP, class AP> inline
bool operator<(const T* lhs, const Zbase<T, SP, AP>& rhs)
{
    return std::lexicographical_compare(lhs, lhs + zen::strLength(lhs), //respect embedded 0
                                        rhs.begin(), rhs.end());
}


template <class T, template <class, class> class SP, class AP> inline
size_t Zbase<T, SP, AP>::length() const
{
    return SP<T, AP>::length(rawStr);
}


template <class T, template <class, class> class SP, class AP> inline
size_t Zbase<T, SP, AP>::size() const
{
    return length();
}


template <class T, template <class, class> class SP, class AP> inline
const T* Zbase<T, SP, AP>::c_str() const
{
    return rawStr;
}


template <class T, template <class, class> class SP, class AP> inline
const T* Zbase<T, SP, AP>::data() const
{
    return rawStr;
}


template <class T, template <class, class> class SP, class AP> inline
const T Zbase<T, SP, AP>::operator[](size_t pos) const
{
    assert(pos < length());
    return rawStr[pos];
}


template <class T, template <class, class> class SP, class AP> inline
const T* Zbase<T, SP, AP>::begin() const
{
    return rawStr;
}


template <class T, template <class, class> class SP, class AP> inline
const T* Zbase<T, SP, AP>::end() const
{
    return rawStr + length();
}


template <class T, template <class, class> class SP, class AP> inline
T* Zbase<T, SP, AP>::begin()
{
    reserve(length());
    return rawStr;
}


template <class T, template <class, class> class SP, class AP> inline
T* Zbase<T, SP, AP>::end()
{
    return begin() + length();
}


template <class T, template <class, class> class SP, class AP> inline
void Zbase<T, SP, AP>::push_back(T val)
{
    operator+=(val);
}


template <class T, template <class, class> class SP, class AP> inline
bool Zbase<T, SP, AP>::empty() const
{
    return length() == 0;
}


template <class T, template <class, class> class SP, class AP> inline
void Zbase<T, SP, AP>::clear()
{
    if (!empty())
    {
        if (canWrite(rawStr, 0))
        {
            rawStr[0] = 0;        //keep allocated memory
            setLength(rawStr, 0); //
        }
        else
            *this = Zbase();
    }
}


template <class T, template <class, class> class SP, class AP> inline
const Zbase<T, SP, AP> operator+(const Zbase<T, SP, AP>& lhs, const Zbase<T, SP, AP>& rhs)
{
    return Zbase<T, SP, AP>(lhs) += rhs;
}


template <class T, template <class, class> class SP, class AP> inline
const Zbase<T, SP, AP> operator+(const Zbase<T, SP, AP>& lhs, const T* rhs)
{
    return Zbase<T, SP, AP>(lhs) += rhs;
}


template <class T, template <class, class> class SP, class AP> inline
const Zbase<T, SP, AP> operator+(const T* lhs, const Zbase<T, SP, AP>& rhs)
{
    return Zbase<T, SP, AP>(lhs) += rhs;
}


template <class T, template <class, class> class SP, class AP> inline
const Zbase<T, SP, AP> operator+(T lhs, const Zbase<T, SP, AP>& rhs)
{
    return (Zbase<T, SP, AP>() += lhs) += rhs;
}


template <class T, template <class, class> class SP, class AP> inline
const Zbase<T, SP, AP> operator+(const Zbase<T, SP, AP>& lhs, T rhs)
{
    return Zbase<T, SP, AP>(lhs) += rhs;
}


template <class T, template <class, class> class SP, class AP> inline
void Zbase<T, SP, AP>::swap(Zbase<T, SP, AP>& other)
{
    std::swap(rawStr, other.rawStr);
}


template <class T, template <class, class> class SP, class AP> inline
void Zbase<T, SP, AP>::reserve(size_t minCapacity) //make unshared and check capacity
{
    if (!canWrite(rawStr, minCapacity))
    {
        //allocate a new string
        T* newStr = create(length(), std::max(minCapacity, length())); //reserve() must NEVER shrink the string: logical const!
        std::copy(rawStr, rawStr + length() + 1, newStr); //include NULL-termination

        destroy(rawStr);
        rawStr = newStr;
    }
}


template <class T, template <class, class> class SP, class AP> inline
Zbase<T, SP, AP>& Zbase<T, SP, AP>::assign(const T* source, size_t len)
{
    if (canWrite(rawStr, len))
    {
        std::copy(source, source + len, rawStr);
        rawStr[len] = 0; //include null-termination
        setLength(rawStr, len);
    }
    else
        *this = Zbase(source, len);

    return *this;
}


template <class T, template <class, class> class SP, class AP> inline
Zbase<T, SP, AP>& Zbase<T, SP, AP>::operator=(const Zbase<T, SP, AP>& source)
{
    Zbase(source).swap(*this);
    return *this;
}


template <class T, template <class, class> class SP, class AP> inline
Zbase<T, SP, AP>& Zbase<T, SP, AP>::operator=(Zbase<T, SP, AP>&& tmp)
{
    swap(tmp);
    return *this;
}


template <class T, template <class, class> class SP, class AP> inline
Zbase<T, SP, AP>& Zbase<T, SP, AP>::operator=(const T* source)
{
    return assign(source, zen::strLength(source));
}


template <class T, template <class, class> class SP, class AP> inline
Zbase<T, SP, AP>& Zbase<T, SP, AP>::operator=(T source)
{
    if (canWrite(rawStr, 1))
    {
        rawStr[0] = source;
        rawStr[1] = 0; //include null-termination
        setLength(rawStr, 1);
    }
    else
        *this = Zbase(source);

    return *this;
}


template <class T, template <class, class> class SP, class AP> inline
Zbase<T, SP, AP>& Zbase<T, SP, AP>::operator+=(const Zbase<T, SP, AP>& other)
{
    const size_t thisLen  = length();
    const size_t otherLen = other.length();
    reserve(thisLen + otherLen); //make unshared and check capacity

    std::copy(other.rawStr, other.rawStr + otherLen + 1, rawStr + thisLen); //include null-termination
    setLength(rawStr, thisLen + otherLen);
    return *this;
}


template <class T, template <class, class> class SP, class AP> inline
Zbase<T, SP, AP>& Zbase<T, SP, AP>::operator+=(const T* other)
{
    const size_t thisLen  = length();
    const size_t otherLen = zen::strLength(other);
    reserve(thisLen + otherLen); //make unshared and check capacity

    std::copy(other, other + otherLen + 1, rawStr + thisLen); //include null-termination
    setLength(rawStr, thisLen + otherLen);
    return *this;
}


template <class T, template <class, class> class SP, class AP> inline
Zbase<T, SP, AP>& Zbase<T, SP, AP>::operator+=(T ch)
{
    const size_t thisLen = length();
    reserve(thisLen + 1); //make unshared and check capacity
    rawStr[thisLen] = ch;
    rawStr[thisLen + 1] = 0;
    setLength(rawStr, thisLen + 1);
    return *this;
}

#endif //Z_BASE_H_INCLUDED
bgstack15