1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
|
// *****************************************************************************
// * This file is part of the FreeFileSync project. It is distributed under *
// * GNU General Public License: https://www.gnu.org/licenses/gpl-3.0 *
// * Copyright (C) Zenju (zenju AT freefilesync DOT org) - All Rights Reserved *
// *****************************************************************************
#ifndef STL_TOOLS_H_84567184321434
#define STL_TOOLS_H_84567184321434
#include <set>
#include <map>
#include <vector>
#include <unordered_set>
#include <unordered_map>
#include <memory>
#include <cassert>
#include <algorithm>
#include <optional>
#include "type_traits.h"
//enhancements for <algorithm>
namespace zen
{
//unfortunately std::erase_if is useless garbage on GCC 12 (requires non-modifying predicate)
template <class T, class Alloc, class Predicate>
void eraseIf(std::vector<T, Alloc>& v, Predicate p);
template <class T, class LessType, class Alloc, class Predicate>
void eraseIf(std::set<T, LessType, Alloc>& s, Predicate p);
template <class KeyType, class ValueType, class LessType, class Alloc, class Predicate>
void eraseIf(std::map<KeyType, ValueType, LessType, Alloc>& m, Predicate p);
//append STL containers
template <class T, class Alloc, class C>
void append(std::vector<T, Alloc>& v, const C& c);
template <class T, class LessType, class Alloc, class C>
void append(std::set<T, LessType, Alloc>& s, const C& c);
template <class KeyType, class ValueType, class LessType, class Alloc, class C>
void append(std::map<KeyType, ValueType, LessType, Alloc>& m, const C& c);
template <class T, class Alloc>
void removeDuplicates(std::vector<T, Alloc>& v);
template <class T, class Alloc, class CompLess>
void removeDuplicates(std::vector<T, Alloc>& v, CompLess less);
template <class T, class Alloc, class CompLess>
void removeDuplicatesStable(std::vector<T, Alloc>& v, CompLess less);
template <class T, class Alloc>
void removeDuplicatesStable(std::vector<T, Alloc>& v);
//searching STL containers
template <class BidirectionalIterator, class T>
BidirectionalIterator findLast(BidirectionalIterator first, BidirectionalIterator last, const T& value);
template <class RandomAccessIterator1, class RandomAccessIterator2> inline
RandomAccessIterator1 searchFirst(const RandomAccessIterator1 first, const RandomAccessIterator1 last,
const RandomAccessIterator2 needleFirst, const RandomAccessIterator2 needleLast);
template <class RandomAccessIterator1, class RandomAccessIterator2, class IsEq> inline
RandomAccessIterator1 searchFirst(const RandomAccessIterator1 first, const RandomAccessIterator1 last,
const RandomAccessIterator2 needleFirst, const RandomAccessIterator2 needleLast, IsEq isEqual);
//replacement for std::find_end taking advantage of bidirectional iterators (and giving the algorithm a reasonable name)
template <class RandomAccessIterator1, class RandomAccessIterator2>
RandomAccessIterator1 searchLast(RandomAccessIterator1 first, RandomAccessIterator1 last,
RandomAccessIterator2 needleFirst, RandomAccessIterator2 needleLast);
//binary search returning an iterator
template <class RandomAccessIterator, class T, class CompLess>
RandomAccessIterator binarySearch(RandomAccessIterator first, RandomAccessIterator last, const T& value, CompLess less);
//read-only variant of std::merge; input: two sorted ranges
template <class Iterator, class FunctionLeftOnly, class FunctionBoth, class FunctionRightOnly, class Compare>
void mergeTraversal(Iterator first1, Iterator last1,
Iterator first2, Iterator last2,
FunctionLeftOnly lo, FunctionBoth bo, FunctionRightOnly ro, Compare compare);
//why, oh why is there no std::optional<T>::get()???
template <class T> inline T* get( std::optional<T>& opt) { return opt ? &*opt : nullptr; }
template <class T> inline const T* get(const std::optional<T>& opt) { return opt ? &*opt : nullptr; }
//===========================================================================
template <class T>
class SharedRef //why is there no std::shared_ref???
{
public:
SharedRef() = delete; //no surprise memory allocations!
explicit SharedRef(std::shared_ptr<T> ptr) : ref_(std::move(ptr)) { assert(ref_); }
template <class U>
SharedRef(const SharedRef<U>& other) : ref_(other.ref_) {}
/**/ T& ref() { return *ref_; };
const T& ref() const { return *ref_; };
std::shared_ptr< T> ptr() { return ref_; };
std::shared_ptr<const T> ptr() const { return ref_; };
private:
template <class U> friend class SharedRef;
std::shared_ptr<T> ref_; //always bound
};
template <class T, class... Args> inline
SharedRef<T> makeSharedRef(Args&& ... args) { return SharedRef<T>(std::make_shared<T>(std::forward<Args>(args)...)); }
//######################## implementation ########################
template <class T, class Alloc, class Predicate> inline
void eraseIf(std::vector<T, Alloc>& v, Predicate p)
{
v.erase(std::remove_if(v.begin(), v.end(), p), v.end());
}
namespace impl
{
template <class S, class Predicate> inline
void setOrMapEraseIf(S& s, Predicate p)
{
for (auto it = s.begin(); it != s.end();)
if (p(*it))
s.erase(it++);
else
++it;
}
}
template <class T, class LessType, class Alloc, class Predicate> inline
void eraseIf(std::set<T, LessType, Alloc>& s, Predicate p) { impl::setOrMapEraseIf(s, p); } //don't make this any more generic! e.g. must not compile for std::vector!!!
template <class KeyType, class ValueType, class LessType, class Alloc, class Predicate> inline
void eraseIf(std::map<KeyType, ValueType, LessType, Alloc>& m, Predicate p) { impl::setOrMapEraseIf(m, p); }
template <class T, class Hash, class Keyeq, class Alloc, class Predicate> inline
void eraseIf(std::unordered_set<T, Hash, Keyeq, Alloc>& s, Predicate p) { impl::setOrMapEraseIf(s, p); }
template <class KeyType, class ValueType, class Hash, class Keyeq, class Alloc, class Predicate> inline
void eraseIf(std::unordered_map<KeyType, ValueType, Hash, Keyeq, Alloc>& m, Predicate p) { impl::setOrMapEraseIf(m, p); }
template <class T, class Alloc, class C> inline
void append(std::vector<T, Alloc>& v, const C& c) { v.insert(v.end(), c.begin(), c.end()); }
template <class T, class LessType, class Alloc, class C> inline
void append(std::set<T, LessType, Alloc>& s, const C& c) { s.insert(c.begin(), c.end()); }
template <class KeyType, class ValueType, class LessType, class Alloc, class C> inline
void append(std::map<KeyType, ValueType, LessType, Alloc>& m, const C& c) { m.insert(c.begin(), c.end()); }
template <class T, class Alloc, class CompLess, class CompEqual> inline
void removeDuplicates(std::vector<T, Alloc>& v, CompLess less, CompEqual eq)
{
std::sort(v.begin(), v.end(), less);
v.erase(std::unique(v.begin(), v.end(), eq), v.end());
}
template <class T, class Alloc, class CompLess> inline
void removeDuplicates(std::vector<T, Alloc>& v, CompLess less)
{
removeDuplicates(v, less, [&](const auto& lhs, const auto& rhs) { return !less(lhs, rhs) && !less(rhs, lhs); });
}
template <class T, class Alloc> inline
void removeDuplicates(std::vector<T, Alloc>& v)
{
removeDuplicates(v, std::less(), std::equal_to());
}
template <class T, class Alloc, class CompLess> inline
void removeDuplicatesStable(std::vector<T, Alloc>& v, CompLess less)
{
std::set<T, CompLess> usedItems(less);
v.erase(std::remove_if(v.begin(), v.end(),
[&usedItems](const T& e) { return !usedItems.insert(e).second; }), v.end());
}
template <class T, class Alloc> inline
void removeDuplicatesStable(std::vector<T, Alloc>& v)
{
removeDuplicatesStable(v, std::less());
}
template <class RandomAccessIterator, class T, class CompLess> inline
RandomAccessIterator binarySearch(RandomAccessIterator first, RandomAccessIterator last, const T& value, CompLess less)
{
static_assert(std::is_same_v<typename std::iterator_traits<RandomAccessIterator>::iterator_category, std::random_access_iterator_tag>);
first = std::lower_bound(first, last, value, less); //alternative: std::partition_point
if (first != last && !less(value, *first))
return first;
else
return last;
}
template <class BidirectionalIterator, class T> inline
BidirectionalIterator findLast(const BidirectionalIterator first, const BidirectionalIterator last, const T& value)
{
for (BidirectionalIterator it = last; it != first;) //reverse iteration: 1. check 2. decrement 3. evaluate
{
--it; //
if (*it == value)
return it;
}
return last;
}
template <class RandomAccessIterator1, class RandomAccessIterator2> inline
RandomAccessIterator1 searchFirst(const RandomAccessIterator1 first, const RandomAccessIterator1 last,
const RandomAccessIterator2 needleFirst, const RandomAccessIterator2 needleLast)
{
if (needleLast - needleFirst == 1) //don't use expensive std::search unless required!
return std::find(first, last, *needleFirst);
return std::search(first, last,
needleFirst, needleLast);
}
template <class RandomAccessIterator1, class RandomAccessIterator2, class IsEq> inline
RandomAccessIterator1 searchFirst(const RandomAccessIterator1 first, const RandomAccessIterator1 last,
const RandomAccessIterator2 needleFirst, const RandomAccessIterator2 needleLast, IsEq isEqual)
{
if (needleLast - needleFirst == 1) //don't use expensive std::search unless required!
return std::find_if(first, last, [needleFirst, isEqual](const auto c) { return isEqual(*needleFirst, c); });
return std::search(first, last,
needleFirst, needleLast, isEqual);
}
template <class RandomAccessIterator1, class RandomAccessIterator2> inline
RandomAccessIterator1 searchLast(const RandomAccessIterator1 first, RandomAccessIterator1 last,
const RandomAccessIterator2 needleFirst, const RandomAccessIterator2 needleLast)
{
if (needleLast - needleFirst == 1) //fast-path
return findLast(first, last, *needleFirst);
const RandomAccessIterator1 itNotFound = last;
//reverse iteration: 1. check 2. decrement 3. evaluate
for (;;)
{
RandomAccessIterator1 it1 = last;
RandomAccessIterator2 it2 = needleLast;
for (;;)
{
if (it2 == needleFirst) return it1;
if (it1 == first) return itNotFound;
--it1;
--it2;
if (*it1 != *it2) break;
}
--last;
}
}
//---------------------------------------------------------------------------------------
//read-only variant of std::merge; input: two sorted ranges
template <class Iterator, class FunctionLeftOnly, class FunctionBoth, class FunctionRightOnly, class Compare> inline
void mergeTraversal(Iterator firstL, Iterator lastL,
Iterator firstR, Iterator lastR,
FunctionLeftOnly lo, FunctionBoth bo, FunctionRightOnly ro, Compare compare)
{
auto itL = firstL;
auto itR = firstR;
auto finishLeft = [&] { std::for_each(itL, lastL, lo); };
auto finishRight = [&] { std::for_each(itR, lastR, ro); };
if (itL == lastL) return finishRight();
if (itR == lastR) return finishLeft ();
for (;;)
if (const std::weak_ordering cmp = compare(*itL, *itR);
cmp < 0)
{
lo(*itL);
if (++itL == lastL)
return finishRight();
}
else if (cmp > 0)
{
ro(*itR);
if (++itR == lastR)
return finishLeft();
}
else
{
bo(*itL, *itR);
++itL; //
++itR; //increment BOTH before checking for end of range!
if (itL == lastL) return finishRight();
if (itR == lastR) return finishLeft ();
//simplify loop by placing both EOB checks at the beginning? => slightly slower
}
}
template <class Num>
class FNV1aHash //FNV-1a: https://en.wikipedia.org/wiki/Fowler%E2%80%93Noll%E2%80%93Vo_hash_function
{
public:
FNV1aHash() {}
explicit FNV1aHash(Num startVal) : hashVal_(startVal) { assert(startVal != 0); /*(yes, might be a real hash, but) most likely bad init value*/}
void add(Num n)
{
hashVal_ ^= n;
hashVal_ *= prime_;
}
Num get() const { return hashVal_; }
private:
static_assert(isUnsignedInt<Num>);
static_assert(sizeof(Num) == 4 || sizeof(Num) == 8);
static constexpr Num base_ = sizeof(Num) == 4 ? 2166136261U : 14695981039346656037ULL;
static constexpr Num prime_ = sizeof(Num) == 4 ? 16777619U : 1099511628211ULL;
Num hashVal_ = base_;
};
}
#endif //STL_TOOLS_H_84567184321434
|