1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
|
// *****************************************************************************
// * This file is part of the FreeFileSync project. It is distributed under *
// * GNU General Public License: https://www.gnu.org/licenses/gpl-3.0 *
// * Copyright (C) Zenju (zenju AT freefilesync DOT org) - All Rights Reserved *
// *****************************************************************************
#ifndef BASIC_MATH_H_3472639843265675
#define BASIC_MATH_H_3472639843265675
#include <algorithm>
#include <iterator>
#include <limits>
#include <cmath>
#include <functional>
#include <cassert>
#include "type_traits.h"
namespace numeric
{
template <class T> T abs(T value);
template <class T> auto dist(T a, T b);
template <class T> int sign(T value); //returns one of {-1, 0, 1}
template <class T> bool isNull(T value);
template <class T, class InputIterator> //precondition: range must be sorted!
auto nearMatch(const T& val, InputIterator first, InputIterator last);
int64_t round(double d); //"little rounding function"
template <class N, class D>
auto integerDivideRoundUp(N numerator, D denominator);
template <size_t N, class T>
T power(T value);
double radToDeg(double rad); //convert unit [rad] into [°]
double degToRad(double degree); //convert unit [°] into [rad]
template <class InputIterator>
double arithmeticMean(InputIterator first, InputIterator last);
template <class RandomAccessIterator>
double median(RandomAccessIterator first, RandomAccessIterator last); //note: invalidates input range!
template <class InputIterator>
double stdDeviation(InputIterator first, InputIterator last, double* mean = nullptr); //estimate standard deviation (and thereby arithmetic mean)
//median absolute deviation: "mad / 0.6745" is a robust measure for standard deviation of a normal distribution
template <class RandomAccessIterator>
double mad(RandomAccessIterator first, RandomAccessIterator last); //note: invalidates input range!
template <class InputIterator>
double norm2(InputIterator first, InputIterator last);
//constants
const double pi = 3.14159265358979323846;
const double e = 2.71828182845904523536;
const double sqrt2 = 1.41421356237309504880;
const double ln2 = 0.693147180559945309417;
//static_assert(pi + e + sqrt2 + ln2 == 7.9672352249818781, "whoopsie");
//----------------------------------------------------------------------------------
//################# inline implementation #########################
template <class T> inline
T abs(T value)
{
//static_assert(std::is_signed_v<T>);
if (value < 0)
return -value; //operator "?:" caveat: may be different type than "value"
else
return value;
}
template <class T> inline
auto dist(T a, T b) //return type might be different than T, e.g. std::chrono::duration instead of std::chrono::time_point
{
return a > b ? a - b : b - a;
}
template <class T> inline
int sign(T value) //returns one of {-1, 0, 1}
{
static_assert(std::is_signed_v<T>);
return value < 0 ? -1 : (value > 0 ? 1 : 0);
}
/*
part of C++11 now!
template <class InputIterator, class Compare> inline
std::pair<InputIterator, InputIterator> minMaxElement(InputIterator first, InputIterator last, Compare compLess)
{
//by factor 1.5 to 3 faster than boost::minmax_element (=two-step algorithm) for built-in types!
InputIterator lowest = first;
InputIterator largest = first;
if (first != last)
{
auto minVal = *lowest; //nice speedup on 64 bit!
auto maxVal = *largest; //
for (;;)
{
++first;
if (first == last)
break;
const auto val = *first;
if (compLess(maxVal, val))
{
largest = first;
maxVal = val;
}
else if (compLess(val, minVal))
{
lowest = first;
minVal = val;
}
}
}
return { lowest, largest };
}
template <class InputIterator> inline
std::pair<InputIterator, InputIterator> minMaxElement(InputIterator first, InputIterator last)
{
return minMaxElement(first, last, std::less<typename std::iterator_traits<InputIterator>::value_type>());
}
*/
template <class T, class InputIterator> inline
auto nearMatch(const T& val, InputIterator first, InputIterator last)
{
if (first == last)
return static_cast<decltype(*first)>(0);
assert(std::is_sorted(first, last));
InputIterator it = std::lower_bound(first, last, val);
if (it == last)
return *--last;
if (it == first)
return *first;
const auto nextVal = *it;
const auto prevVal = *--it;
return val - prevVal < nextVal - val ? prevVal : nextVal;
}
template <class T> inline
bool isNull(T value)
{
return abs(value) <= std::numeric_limits<T>::epsilon(); //epsilon is 0 für integral types => less-equal
}
inline
int64_t round(double d)
{
assert(d - 0.5 >= std::numeric_limits<int64_t>::min() && //if double is larger than what int can represent:
d + 0.5 <= std::numeric_limits<int64_t>::max()); //=> undefined behavior!
return static_cast<int64_t>(d < 0 ? d - 0.5 : d + 0.5);
}
template <class N, class D> inline
auto integerDivideRoundUp(N numerator, D denominator)
{
static_assert(zen::IsInteger<N>::value);
static_assert(zen::IsInteger<D>::value);
assert(numerator > 0 && denominator > 0);
return (numerator + denominator - 1) / denominator;
}
namespace
{
template <size_t N, class T> struct PowerImpl;
/*
template <size_t N, class T> -> let's use non-recursive specializations to help the compiler
struct PowerImpl { static T result(const T& value) { return PowerImpl<N - 1, T>::result(value) * value; } };
*/
template <class T> struct PowerImpl<2, T> { static T result(T value) { return value * value; } };
template <class T> struct PowerImpl<3, T> { static T result(T value) { return value * value * value; } };
}
template <size_t n, class T> inline
T power(T value)
{
return PowerImpl<n, T>::result(value);
}
inline
double radToDeg(double rad)
{
return rad * 180.0 / numeric::pi;
}
inline
double degToRad(double degree)
{
return degree * numeric::pi / 180.0;
}
template <class InputIterator> inline
double arithmeticMean(InputIterator first, InputIterator last)
{
size_t n = 0; //avoid random-access requirement for iterator!
double sum_xi = 0;
for (; first != last; ++first, ++n)
sum_xi += *first;
return n == 0 ? 0 : sum_xi / n;
}
template <class RandomAccessIterator> inline
double median(RandomAccessIterator first, RandomAccessIterator last) //note: invalidates input range!
{
const size_t n = last - first;
if (n == 0)
return 0;
std::nth_element(first, first + n / 2, last); //complexity: O(n)
const double midVal = *(first + n / 2);
if (n % 2 != 0)
return midVal;
else //n is even and >= 2 in this context: return mean of two middle values
return 0.5 * (*std::max_element(first, first + n / 2) + midVal); //this operation is the reason why median() CANNOT support a comparison predicate!!!
}
template <class RandomAccessIterator> inline
double mad(RandomAccessIterator first, RandomAccessIterator last) //note: invalidates input range!
{
//https://en.wikipedia.org/wiki/Median_absolute_deviation
const size_t n = last - first;
if (n == 0)
return 0;
const double m = median(first, last);
//the second median needs to operate on absolute residuals => avoid transforming input range which may have less than double precision!
auto lessMedAbs = [m](double lhs, double rhs) { return abs(lhs - m) < abs(rhs - m); };
std::nth_element(first, first + n / 2, last, lessMedAbs); //complexity: O(n)
const double midVal = abs(*(first + n / 2) - m);
if (n % 2 != 0)
return midVal;
else //n is even and >= 2 in this context: return mean of two middle values
return 0.5 * (abs(*std::max_element(first, first + n / 2, lessMedAbs) - m) + midVal);
}
template <class InputIterator> inline
double stdDeviation(InputIterator first, InputIterator last, double* arithMean)
{
//implementation minimizing rounding errors, see: https://en.wikipedia.org/wiki/Standard_deviation
//combined with technique avoiding overflow, see: http://www.netlib.org/blas/dnrm2.f -> only 10% performance degradation
size_t n = 0;
double mean = 0;
double q = 0;
double scale = 1;
for (; first != last; ++first)
{
++n;
const double val = *first - mean;
if (abs(val) > scale)
{
q = (n - 1.0) / n + q * power<2>(scale / val);
scale = abs(val);
}
else
q += (n - 1.0) * power<2>(val / scale) / n;
mean += val / n;
}
if (arithMean)
*arithMean = mean;
return n <= 1 ? 0 : std::sqrt(q / (n - 1)) * scale;
}
template <class InputIterator> inline
double norm2(InputIterator first, InputIterator last)
{
double result = 0;
double scale = 1;
for (; first != last; ++first)
{
const double tmp = abs(*first);
if (tmp > scale)
{
result = 1 + result * power<2>(scale / tmp);
scale = tmp;
}
else
result += power<2>(tmp / scale);
}
return std::sqrt(result) * scale;
}
}
#endif //BASIC_MATH_H_3472639843265675
|