1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
|
// **************************************************************************
// * This file is part of the FreeFileSync project. It is distributed under *
// * GNU General Public License: http://www.gnu.org/licenses/gpl.html *
// * Copyright (C) Zenju (zenju AT gmx DOT de) - All Rights Reserved *
// **************************************************************************
#include "perf_check.h"
#include <limits>
//#include <wx/ffile.h>
#include <zen/basic_math.h>
#include <zen/i18n.h>
#include <zen/format_unit.h>
using namespace zen;
PerfCheck::PerfCheck(unsigned int windowSizeRemainingTime,
unsigned int windowSizeSpeed) :
windowSizeRemTime(windowSizeRemainingTime),
windowSizeSpeed_(windowSizeSpeed),
windowMax(std::max(windowSizeRemainingTime, windowSizeSpeed)) {}
PerfCheck::~PerfCheck()
{
/*
//write samples to a file
wxFFile outputFile(wxT("statistics.dat"), wxT("w"));
outputFile.Write(wxT("Time(ms);Objects;Data\n"));
for (auto it = samples.begin(); it != samples.end(); ++it)
{
outputFile.Write(numberTo<wxString>(it->first));
outputFile.Write(wxT(";"));
outputFile.Write(numberTo<wxString>(it->second.objCount_));
outputFile.Write(wxT(";"));
outputFile.Write(numberTo<wxString>(it->second.data_));
outputFile.Write(wxT("\n"));
}
*/
}
void PerfCheck::addSample(int itemsCurrent, double dataCurrent, long timeMs)
{
samples.insert(samples.end(), std::make_pair(timeMs, Record(itemsCurrent, dataCurrent))); //use fact that time is monotonously ascending
//remove all records earlier than "now - windowMax"
const long newBegin = timeMs - windowMax;
auto it = samples.upper_bound(newBegin);
if (it != samples.begin())
samples.erase(samples.begin(), --it); //keep one point before newBegin in order to handle "measurement holes"
}
inline
std::pair<const std::multimap<long, PerfCheck::Record>::value_type*, const std::multimap<long, PerfCheck::Record>::value_type*> PerfCheck::getBlockFromEnd(long windowSize) const
{
if (!samples.empty())
{
auto itBack = samples.rbegin();
//find start of records "window"
auto itFront = samples.upper_bound(itBack->first - windowSize);
if (itFront != samples.begin())
--itFront; //one point before window begin in order to handle "measurement holes"
return std::make_pair(&*itFront, &*itBack);
}
return std::make_pair(nullptr, nullptr);
}
zen::Opt<std::wstring> PerfCheck::getRemainingTime(double dataRemaining) const
{
auto blk = getBlockFromEnd(windowSizeRemTime);
if (blk.first && blk.second)
{
const auto& itemFront = *blk.first;
const auto& itemBack = *blk.second;
//-----------------------------------------------------------------------------------------------
const long timeDelta = itemBack.first - itemFront.first;
const double dataDelta = itemBack.second.data_ - itemFront.second.data_;
//objects model logical operations *NOT* disk accesses, so we better play safe and use "bytes" only!
//http://sourceforge.net/p/freefilesync/feature-requests/197/
if (!numeric::isNull(dataDelta)) //sign(dataRemaining) != sign(dataDelta) usually an error, so show it!
return remainingTimeToString(dataRemaining * timeDelta / (1000.0 * dataDelta));
}
return NoValue();
}
zen::Opt<std::wstring> PerfCheck::getBytesPerSecond() const
{
auto blk = getBlockFromEnd(windowSizeSpeed_);
if (blk.first && blk.second)
{
const auto& itemFront = *blk.first;
const auto& itemBack = *blk.second;
//-----------------------------------------------------------------------------------------------
const long timeDelta = itemBack.first - itemFront.first;
const double dataDelta = itemBack.second.data_ - itemFront.second.data_;
if (timeDelta != 0/* && dataDelta > 0*/)
return filesizeToShortString(zen::Int64(dataDelta * 1000.0 / timeDelta)) + _("/sec");
}
return NoValue();
}
zen::Opt<std::wstring> PerfCheck::getItemsPerSecond() const
{
auto blk = getBlockFromEnd(windowSizeSpeed_);
if (blk.first && blk.second)
{
const auto& itemFront = *blk.first;
const auto& itemBack = *blk.second;
//-----------------------------------------------------------------------------------------------
const long timeDelta = itemBack.first - itemFront.first;
const int itemsDelta = itemBack.second.itemCount_ - itemFront.second.itemCount_;
if (timeDelta != 0)
return replaceCpy(_("%x items"), L"%x", formatThreeDigitPrecision(itemsDelta * 1000.0 / timeDelta)) + _("/sec");
}
return NoValue();
}
/*
class for calculation of remaining time:
----------------------------------------
"filesize |-> time" is an affine linear function f(x) = z_1 + z_2 x
For given n measurements, sizes x_0, ..., x_n and times f_0, ..., f_n, the function f (as a polynom of degree 1) can be lineary approximated by
z_1 = (r - s * q / p) / ((n + 1) - s * s / p)
z_2 = (q - s * z_1) / p = (r - (n + 1) z_1) / s
with
p := x_0^2 + ... + x_n^2
q := f_0 x_0 + ... + f_n x_n
r := f_0 + ... + f_n
s := x_0 + ... + x_n
=> the time to process N files with amount of data D is: N * z_1 + D * z_2
Problem:
--------
Times f_0, ..., f_n can be very small so that precision of the PC clock is poor.
=> Times have to be accumulated to enhance precision:
Copying of m files with sizes x_i and times f_i (i = 1, ..., m) takes sum_i f(x_i) := m * z_1 + z_2 * sum x_i = sum f_i
With X defined as the accumulated sizes and F the accumulated times this gives: (in theory...)
m * z_1 + z_2 * X = F <=>
z_1 + z_2 * X / m = F / m
=> we obtain a new (artificial) measurement with size X / m and time F / m to be used in the linear approximation above
Statistics::Statistics(int totalObjectCount, double totalDataAmount, unsigned recordCount) :
objectsTotal(totalObjectCount),
dataTotal(totalDataAmount),
recordsMax(recordCount),
objectsLast(0),
dataLast(0),
timeLast(wxGetLocalTimeMillis()),
z1_current(0),
z2_current(0),
dummyRecordPresent(false) {}
wxString Statistics::getRemainingTime(int objectsCurrent, double dataCurrent)
{
//add new measurement point
const int m = objectsCurrent - objectsLast;
if (m != 0)
{
objectsLast = objectsCurrent;
const double X = dataCurrent - dataLast;
dataLast = dataCurrent;
const zen::Int64 timeCurrent = wxGetLocalTimeMillis();
const double F = (timeCurrent - timeLast).ToDouble();
timeLast = timeCurrent;
record newEntry;
newEntry.x_i = X / m;
newEntry.f_i = F / m;
//remove dummy record
if (dummyRecordPresent)
{
measurements.pop_back();
dummyRecordPresent = false;
}
//insert new record
measurements.push_back(newEntry);
if (measurements.size() > recordsMax)
measurements.pop_front();
}
else //dataCurrent increased without processing new objects:
{ //modify last measurement until m != 0
const double X = dataCurrent - dataLast; //do not set dataLast, timeLast variables here, but write dummy record instead
if (!isNull(X))
{
const zen::Int64 timeCurrent = wxGetLocalTimeMillis();
const double F = (timeCurrent - timeLast).ToDouble();
record modifyEntry;
modifyEntry.x_i = X;
modifyEntry.f_i = F;
//insert dummy record
if (!dummyRecordPresent)
{
measurements.push_back(modifyEntry);
if (measurements.size() > recordsMax)
measurements.pop_front();
dummyRecordPresent = true;
}
else //modify dummy record
measurements.back() = modifyEntry;
}
}
//calculate remaining time based on stored measurement points
double p = 0;
double q = 0;
double r = 0;
double s = 0;
for (std::list<record>::const_iterator i = measurements.begin(); i != measurements.end(); ++i)
{
const double x_i = i->x_i;
const double f_i = i->f_i;
p += x_i * x_i;
q += f_i * x_i;
r += f_i;
s += x_i;
}
if (!isNull(p))
{
const double n = measurements.size();
const double tmp = (n - s * s / p);
if (!isNull(tmp) && !isNull(s))
{
const double z1 = (r - s * q / p) / tmp;
const double z2 = (r - n * z1) / s; //not (n + 1) here, since n already is the number of measurements
//refresh current values for z1, z2
z1_current = z1;
z2_current = z2;
}
}
return formatRemainingTime((objectsTotal - objectsCurrent) * z1_current + (dataTotal - dataCurrent) * z2_current);
}
*/
|