aboutsummaryrefslogtreecommitdiff
path: root/utils.py
blob: b7434636580eb3ec6c329931cd4897ed525c731f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
#! /usr/local/bin/python
#-*- coding: utf-8 -*-

__author__ = "Cedric Bonhomme"
__version__ = "$Revision: 0.1 $"
__date__ = "$Date: 2010/02/24 $"
__copyright__ = "Copyright (c) 2010 Cedric Bonhomme"
__license__ = "GPLv3"

import re
import pylab
import sqlite3
import hashlib

from datetime import datetime
from string import punctuation
from collections import defaultdict


def remove_html_tags(data):
    """
    Remove HTML tags for the search.
    """
    p = re.compile(r'<[^<]*?/?>')
    return p.sub('', data)

def top_words(dic_articles, n=10):
    """
    Return the n most frequent words in a list.
    """
    words = {}
    articles_content = ""
    for rss_feed_id in dic_articles.keys():
        for article in dic_articles[rss_feed_id]:
            articles_content += remove_html_tags(article[4].encode('utf-8'))
    words_gen = (word.strip(punctuation).lower() \
                        for word in articles_content.split() \
                                if len(word) >= 5)
    words = defaultdict(int)
    for word in words_gen:
        words[word] += 1
    top_words = sorted(words.iteritems(),
                key=lambda(word, count): (-count, word))[:n]
    return top_words

def create_histogram(words, file_name="./var/histogram.png"):
    """
    Create a histogram.
    """
    length = 10
    ind = pylab.arange(length) # abscissa
    width = 0.35 # bars width

    w = [elem[0] for elem in words]
    count = [int(elem[1]) for elem in words]

    max_count = max(count)  # maximal weight

    p = pylab.bar(ind, count, width, color='r')

    pylab.ylabel("Count")
    pylab.title("Most frequent words")
    pylab.xticks(ind + (width / 2), range(1, len(w)+1))
    pylab.xlim(-width, len(ind))

    # changing the ordinate scale according to the max.
    if max_count <= 100:
        pylab.ylim(0, max_count + 5)
        pylab.yticks(pylab.arange(0, max_count + 5, 5))
    elif max_count <= 200:
        pylab.ylim(0, max_count + 10)
        pylab.yticks(pylab.arange(0, max_count + 10, 10))
    elif max_count <= 600:
        pylab.ylim(0, max_count + 25)
        pylab.yticks(pylab.arange(0, max_count + 25, 25))
    elif max_count <= 800:
        pylab.ylim(0, max_count + 50)
        pylab.yticks(pylab.arange(0, max_count + 50, 50))

    pylab.savefig(file_name, dpi = 80)
    pylab.close()

def compare(stringtime1, stringtime2):
    """
    Compare two dates in the format 'yyyy-mm-dd hh:mm:ss'.
    """
    date1, time1 = stringtime1.split(' ')
    date2, time2 = stringtime2.split(' ')

    year1, month1, day1 = date1.split('-')
    year2, month2, day2 = date2.split('-')

    hour1, minute1, second1 = time1.split(':')
    hour2, minute2, second2 = time2.split(':')

    datetime1 = datetime(year=int(year1), month=int(month1), day=int(day1), \
                        hour=int(hour1), minute=int(minute1), second=int(second1))

    datetime2 = datetime(year=int(year2), month=int(month2), day=int(day2), \
                        hour=int(hour2), minute=int(minute2), second=int(second2))

    if datetime1 < datetime2:
        return -1
    elif datetime1 > datetime2:
        return 1
    return 0

def load_feed():
    """
    Load feeds and articles in a dictionary.
    """
    list_of_feeds = None
    list_of_articles = None
    try:
        conn = sqlite3.connect("./var/feed.db", isolation_level = None)
        c = conn.cursor()
        list_of_feeds = c.execute("SELECT * FROM feeds").fetchall()
    except:
        pass

    # articles[feed_id] = (article_id, article_date, article_title,
    #               article_link, article_description, article_readed)
    # feeds[feed_id] = (nb_article, nb_article_unreaded, feed_image,
    #               feed_title, feed_link, feed_site_link)
    articles, feeds = {}, {}
    if list_of_feeds is not None:
        for feed in list_of_feeds:
            list_of_articles = c.execute(\
                    "SELECT * FROM articles WHERE feed_link='" + \
                    feed[2] + "'").fetchall()

            if list_of_articles is not None:
                for article in list_of_articles:
                    sha256_hash = hashlib.sha256()
                    sha256_hash.update(article[5].encode('utf-8'))
                    feed_id = sha256_hash.hexdigest()
                    sha256_hash.update(article[2].encode('utf-8'))
                    article_id = sha256_hash.hexdigest()

                    article_list = [article_id, article[0], article[1], \
                        article[2], article[3], article[4]]

                    if feed_id not in articles:
                        articles[feed_id] = [article_list]
                    else:
                        articles[feed_id].append(article_list)


                # sort articles by date for each feeds
                for rss_feed_id in articles.keys():
                    articles[rss_feed_id].sort(lambda x,y: compare(y[1], x[1]))

                feeds[feed_id] = (len(articles[feed_id]), \
                                len([article for article in articles[feed_id] \
                                    if article[5]=="0"]), \
                                feed[3], feed[0], feed[2], feed[1] \
                                )
        c.close()

        return (articles, feeds)
    return (articles, feeds)
bgstack15