1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
|
// **************************************************************************
// * This file is part of the FreeFileSync project. It is distributed under *
// * GNU General Public License: http://www.gnu.org/licenses/gpl.html *
// * Copyright (C) Zenju (zenju AT gmx DOT de) - All Rights Reserved *
// **************************************************************************
#ifndef Z_BASE_H_INCLUDED
#define Z_BASE_H_INCLUDED
#include <algorithm>
#include <cassert>
#include <cstdint>
#include "string_tools.h"
#include <boost/detail/atomic_count.hpp>
//Zbase - a policy based string class optimizing performance and genericity
namespace zen
{
/*
Allocator Policy:
-----------------
void* allocate(size_t size) //throw std::bad_alloc
void deallocate(void* ptr)
size_t calcCapacity(size_t length)
*/
class AllocatorOptimalSpeed //exponential growth + min size
{
public:
//::operator new/ ::operator delete show same performance characterisics like malloc()/free()!
static void* allocate(size_t size) { return ::operator new(size); } //throw std::bad_alloc
static void deallocate(void* ptr) { ::operator delete(ptr); }
static size_t calcCapacity(size_t length) { return std::max<size_t>(std::max<size_t>(16, length), length + length / 2); } //size_t might overflow!
//any growth rate should not exceed golden ratio: 1.618033989
};
class AllocatorOptimalMemory //no wasted memory, but more reallocations required when manipulating string
{
public:
static void* allocate(size_t size) { return ::operator new(size); } //throw std::bad_alloc
static void deallocate(void* ptr) { ::operator delete(ptr); }
static size_t calcCapacity(size_t length) { return length; }
};
/*
Storage Policy:
---------------
template <typename Char, //Character Type
class AP> //Allocator Policy
Char* create(size_t size)
Char* create(size_t size, size_t minCapacity)
Char* clone(Char* ptr)
void destroy(Char* ptr)
bool canWrite(const Char* ptr, size_t minCapacity) //needs to be checked before writing to "ptr"
size_t length(const Char* ptr)
void setLength(Char* ptr, size_t newLength)
*/
template <typename Char, //Character Type
class AP> //Allocator Policy
class StorageDeepCopy : public AP
{
protected:
~StorageDeepCopy() {}
static Char* create(size_t size) { return create(size, size); }
static Char* create(size_t size, size_t minCapacity)
{
assert(size <= minCapacity);
const size_t newCapacity = AP::calcCapacity(minCapacity);
assert(newCapacity >= minCapacity);
Descriptor* const newDescr = static_cast<Descriptor*>(AP::allocate(sizeof(Descriptor) + (newCapacity + 1) * sizeof(Char)));
newDescr->length = size;
newDescr->capacity = newCapacity;
return reinterpret_cast<Char*>(newDescr + 1); //alignment note: "newDescr + 1" is Descriptor-aligned, which is larger than alignment for Char-array! => no problem!
}
static Char* clone(Char* ptr)
{
Char* newData = create(length(ptr));
std::copy(ptr, ptr + length(ptr) + 1, newData);
return newData;
}
static void destroy(Char* ptr) { AP::deallocate(descr(ptr)); }
//this needs to be checked before writing to "ptr"
static bool canWrite(const Char* ptr, size_t minCapacity) { return minCapacity <= descr(ptr)->capacity; }
static size_t length(const Char* ptr) { return descr(ptr)->length; }
static void setLength(Char* ptr, size_t newLength)
{
assert(canWrite(ptr, newLength));
descr(ptr)->length = newLength;
}
private:
struct Descriptor
{
std::uint32_t length;
std::uint32_t capacity; //allocated size without null-termination
};
static Descriptor* descr( Char* ptr) { return reinterpret_cast< Descriptor*>(ptr) - 1; }
static const Descriptor* descr(const Char* ptr) { return reinterpret_cast<const Descriptor*>(ptr) - 1; }
};
template <typename Char, //Character Type
class AP> //Allocator Policy
class StorageRefCountThreadSafe : public AP
{
protected:
~StorageRefCountThreadSafe() {}
static Char* create(size_t size) { return create(size, size); }
static Char* create(size_t size, size_t minCapacity)
{
assert(size <= minCapacity);
const size_t newCapacity = AP::calcCapacity(minCapacity);
assert(newCapacity >= minCapacity);
Descriptor* const newDescr = static_cast<Descriptor*>(AP::allocate(sizeof(Descriptor) + (newCapacity + 1) * sizeof(Char)));
new (newDescr) Descriptor(1, size, newCapacity);
return reinterpret_cast<Char*>(newDescr + 1);
}
static Char* clone(Char* ptr)
{
assert(descr(ptr)->refCount > 0);
++descr(ptr)->refCount;
return ptr;
}
static void destroy(Char* ptr)
{
assert(descr(ptr)->refCount > 0);
if (--descr(ptr)->refCount == 0) //operator--() is overloaded to decrement and evaluate in a single atomic operation!
{
descr(ptr)->~Descriptor();
AP::deallocate(descr(ptr));
}
}
static bool canWrite(const Char* ptr, size_t minCapacity) //needs to be checked before writing to "ptr"
{
assert(descr(ptr)->refCount > 0);
return descr(ptr)->refCount == 1 && minCapacity <= descr(ptr)->capacity;
}
static size_t length(const Char* ptr) { return descr(ptr)->length; }
static void setLength(Char* ptr, size_t newLength)
{
assert(canWrite(ptr, newLength));
descr(ptr)->length = static_cast<std::uint32_t>(newLength);
}
private:
struct Descriptor
{
Descriptor(long rc, size_t len, size_t cap) :
refCount(rc),
length(static_cast<std::uint32_t>(len)),
capacity(static_cast<std::uint32_t>(cap)) {}
boost::detail::atomic_count refCount; //practically no perf loss: ~0.2%! (FFS comparison)
//replace by #include <atomic> std::atomic_int when finally getting rid of VS2010
std::uint32_t length;
std::uint32_t capacity; //allocated size without null-termination
};
static Descriptor* descr( Char* ptr) { return reinterpret_cast< Descriptor*>(ptr) - 1; }
static const Descriptor* descr(const Char* ptr) { return reinterpret_cast<const Descriptor*>(ptr) - 1; }
};
//################################################################################################################################################################
//perf note: interstingly StorageDeepCopy and StorageRefCountThreadSafe show same performance in FFS comparison
template <class Char, //Character Type
template <class, class> class SP = StorageRefCountThreadSafe, //Storage Policy
class AP = AllocatorOptimalSpeed> //Allocator Policy
class Zbase : public SP<Char, AP>
{
public:
Zbase();
Zbase(const Char* source); //implicit conversion from a C-string
Zbase(const Char* source, size_t length);
Zbase(const Zbase& source);
Zbase(Zbase&& tmp);
explicit Zbase(Char source); //dangerous if implicit: Char buffer[]; return buffer[0]; ups... forgot &, but not a compiler error!
//allow explicit construction from different string type, prevent ambiguity via SFINAE
template <class S> explicit Zbase(const S& other, typename S::value_type = 0);
~Zbase();
//operator const Char* () const; //NO implicit conversion to a C-string!! Many problems... one of them: if we forget to provide operator overloads, it'll just work with a Char*...
//STL accessors
typedef Char* iterator;
typedef const Char* const_iterator;
typedef Char& reference;
typedef const Char& const_reference;
typedef Char value_type;
Char* begin();
Char* end ();
const Char* begin() const;
const Char* end () const;
const Char* cbegin() const { return begin(); }
const Char* cend () const { return end(); }
//std::string functions
size_t length() const;
size_t size () const { return length(); }
const Char* c_str() const { return rawStr; }; //C-string format with 0-termination
const Char* data() const { return rawStr; }; //internal representation, 0-termination not guaranteed
const Char operator[](size_t pos) const;
bool empty() const { return length() == 0; }
void clear();
size_t find (const Zbase& str, size_t pos = 0) const; //
size_t find (const Char* str, size_t pos = 0) const; //
size_t find (Char ch, size_t pos = 0) const; //returns "npos" if not found
size_t rfind(Char ch, size_t pos = npos) const; //
size_t rfind(const Char* str, size_t pos = npos) const; //
Zbase& replace(size_t pos1, size_t n1, const Zbase& str);
void reserve(size_t minCapacity);
Zbase& assign(const Char* source, size_t len);
Zbase& append(const Char* source, size_t len);
void resize(size_t newSize, Char fillChar = 0);
void swap(Zbase& other);
void push_back(Char val) { operator+=(val); } //STL access
Zbase& operator=(const Zbase& source);
Zbase& operator=(Zbase&& tmp);
Zbase& operator=(const Char* source);
Zbase& operator=(Char source);
Zbase& operator+=(const Zbase& other);
Zbase& operator+=(const Char* other);
Zbase& operator+=(Char ch);
static const size_t npos = static_cast<size_t>(-1);
private:
Zbase(int); //
Zbase& operator=(int); //detect usage errors
Zbase& operator+=(int); //
void push_back(int); //
Char* rawStr;
};
template <class Char, template <class, class> class SP, class AP> bool operator==(const Zbase<Char, SP, AP>& lhs, const Zbase<Char, SP, AP>& rhs);
template <class Char, template <class, class> class SP, class AP> bool operator==(const Zbase<Char, SP, AP>& lhs, const Char* rhs);
template <class Char, template <class, class> class SP, class AP> inline bool operator==(const Char* lhs, const Zbase<Char, SP, AP>& rhs) { return operator==(rhs, lhs); }
template <class Char, template <class, class> class SP, class AP> inline bool operator!=(const Zbase<Char, SP, AP>& lhs, const Zbase<Char, SP, AP>& rhs) { return !operator==(lhs, rhs); }
template <class Char, template <class, class> class SP, class AP> inline bool operator!=(const Zbase<Char, SP, AP>& lhs, const Char* rhs) { return !operator==(lhs, rhs); }
template <class Char, template <class, class> class SP, class AP> inline bool operator!=(const Char* lhs, const Zbase<Char, SP, AP>& rhs) { return !operator==(lhs, rhs); }
template <class Char, template <class, class> class SP, class AP> bool operator<(const Zbase<Char, SP, AP>& lhs, const Zbase<Char, SP, AP>& rhs);
template <class Char, template <class, class> class SP, class AP> bool operator<(const Zbase<Char, SP, AP>& lhs, const Char* rhs);
template <class Char, template <class, class> class SP, class AP> bool operator<(const Char* lhs, const Zbase<Char, SP, AP>& rhs);
template <class Char, template <class, class> class SP, class AP> inline Zbase<Char, SP, AP> operator+(const Zbase<Char, SP, AP>& lhs, const Zbase<Char, SP, AP>& rhs) { return Zbase<Char, SP, AP>(lhs) += rhs; }
template <class Char, template <class, class> class SP, class AP> inline Zbase<Char, SP, AP> operator+(const Zbase<Char, SP, AP>& lhs, const Char* rhs) { return Zbase<Char, SP, AP>(lhs) += rhs; }
template <class Char, template <class, class> class SP, class AP> inline Zbase<Char, SP, AP> operator+(const Zbase<Char, SP, AP>& lhs, Char rhs) { return Zbase<Char, SP, AP>(lhs) += rhs; }
//don't use unified first argument but save one move-construction in the r-value case instead!
template <class Char, template <class, class> class SP, class AP> inline Zbase<Char, SP, AP> operator+(Zbase<Char, SP, AP>&& lhs, const Zbase<Char, SP, AP>& rhs) { return std::move(lhs += rhs); } //is the move really needed?
template <class Char, template <class, class> class SP, class AP> inline Zbase<Char, SP, AP> operator+(Zbase<Char, SP, AP>&& lhs, const Char* rhs) { return std::move(lhs += rhs); } //lhs, is an l-vlaue in the function body...
template <class Char, template <class, class> class SP, class AP> inline Zbase<Char, SP, AP> operator+(Zbase<Char, SP, AP>&& lhs, Char rhs) { return std::move(lhs += rhs); } //and not a local variable => no copy elision
template <class Char, template <class, class> class SP, class AP> inline Zbase<Char, SP, AP> operator+( Char lhs, const Zbase<Char, SP, AP>& rhs) { return Zbase<Char, SP, AP>(lhs) += rhs; }
template <class Char, template <class, class> class SP, class AP> inline Zbase<Char, SP, AP> operator+(const Char* lhs, const Zbase<Char, SP, AP>& rhs) { return Zbase<Char, SP, AP>(lhs) += rhs; }
//################################# implementation ########################################
template <class Char, template <class, class> class SP, class AP> inline
Zbase<Char, SP, AP>::Zbase()
{
//resist the temptation to avoid this allocation by referening a static global: NO performance advantage, MT issues!
rawStr = this->create(0);
rawStr[0] = 0;
}
template <class Char, template <class, class> class SP, class AP> inline
Zbase<Char, SP, AP>::Zbase(Char source)
{
rawStr = this->create(1);
rawStr[0] = source;
rawStr[1] = 0;
}
template <class Char, template <class, class> class SP, class AP> inline
Zbase<Char, SP, AP>::Zbase(const Char* source)
{
const size_t sourceLen = strLength(source);
rawStr = this->create(sourceLen);
std::copy(source, source + sourceLen + 1, rawStr); //include null-termination
}
template <class Char, template <class, class> class SP, class AP> inline
Zbase<Char, SP, AP>::Zbase(const Char* source, size_t sourceLen)
{
rawStr = this->create(sourceLen);
std::copy(source, source + sourceLen, rawStr);
rawStr[sourceLen] = 0;
}
template <class Char, template <class, class> class SP, class AP> inline
Zbase<Char, SP, AP>::Zbase(const Zbase<Char, SP, AP>& source)
{
rawStr = this->clone(source.rawStr);
}
template <class Char, template <class, class> class SP, class AP> inline
Zbase<Char, SP, AP>::Zbase(Zbase<Char, SP, AP>&& tmp)
{
//rawStr = this->clone(tmp.rawStr); NO! do not increment ref-count of a potentially unshared string! We'd lose optimization opportunity of reusing it!
//instead create a dummy string and swap:
if (this->canWrite(tmp.rawStr, 0)) //perf: this check saves about 4%
{
rawStr = this->create(0); //no perf issue! see comment in default constructor
rawStr[0] = 0;
swap(tmp);
}
else //shared representation: yet another "add ref" won't hurt
rawStr = this->clone(tmp.rawStr);
}
template <class Char, template <class, class> class SP, class AP>
template <class S> inline
Zbase<Char, SP, AP>::Zbase(const S& other, typename S::value_type)
{
const size_t sourceLen = other.size();
rawStr = this->create(sourceLen);
std::copy(other.c_str(), other.c_str() + sourceLen, rawStr);
rawStr[sourceLen] = 0;
}
template <class Char, template <class, class> class SP, class AP> inline
Zbase<Char, SP, AP>::~Zbase()
{
this->destroy(rawStr);
}
template <class Char, template <class, class> class SP, class AP> inline
size_t Zbase<Char, SP, AP>::find(const Zbase& str, size_t pos) const
{
assert(pos <= length());
const Char* thisEnd = end(); //respect embedded 0
const Char* it = std::search(begin() + pos, thisEnd,
str.begin(), str.end());
return it == thisEnd ? npos : it - begin();
}
template <class Char, template <class, class> class SP, class AP> inline
size_t Zbase<Char, SP, AP>::find(const Char* str, size_t pos) const
{
assert(pos <= length());
const Char* thisEnd = end(); //respect embedded 0
const Char* it = std::search(begin() + pos, thisEnd,
str, str + strLength(str));
return it == thisEnd ? npos : it - begin();
}
template <class Char, template <class, class> class SP, class AP> inline
size_t Zbase<Char, SP, AP>::find(Char ch, size_t pos) const
{
assert(pos <= length());
const Char* thisEnd = end();
const Char* it = std::find(begin() + pos, thisEnd, ch); //respect embedded 0
return it == thisEnd ? npos : it - begin();
}
template <class Char, template <class, class> class SP, class AP> inline
size_t Zbase<Char, SP, AP>::rfind(Char ch, size_t pos) const
{
assert(pos == npos || pos <= length());
const Char* currEnd = pos == npos ? end() : begin() + std::min(pos + 1, length());
const Char* it = find_last(begin(), currEnd, ch);
return it == currEnd ? npos : it - begin();
}
template <class Char, template <class, class> class SP, class AP> inline
size_t Zbase<Char, SP, AP>::rfind(const Char* str, size_t pos) const
{
assert(pos == npos || pos <= length());
const size_t strLen = strLength(str);
const Char* currEnd = pos == npos ? end() : begin() + std::min(pos + strLen, length());
const Char* it = search_last(begin(), currEnd,
str, str + strLen);
return it == currEnd ? npos : it - begin();
}
template <class Char, template <class, class> class SP, class AP>
Zbase<Char, SP, AP>& Zbase<Char, SP, AP>::replace(size_t pos1, size_t n1, const Zbase& str)
{
assert(str.data() < rawStr || rawStr + length() < str.data()); //str mustn't point to data in this string
assert(pos1 + n1 <= length());
const size_t n2 = str.length();
const size_t oldLen = length();
if (oldLen == 0)
return *this = str;
const size_t newLen = oldLen - n1 + n2;
if (this->canWrite(rawStr, newLen))
{
if (n1 < n2) //move remainder right -> std::copy_backward
{
std::copy_backward(rawStr + pos1 + n1, rawStr + oldLen + 1, rawStr + newLen + 1); //include null-termination
this->setLength(rawStr, newLen);
}
else if (n1 > n2) //shift left -> std::copy
{
std::copy(rawStr + pos1 + n1, rawStr + oldLen + 1, rawStr + pos1 + n2); //include null-termination
this->setLength(rawStr, newLen);
}
std::copy(str.data(), str.data() + n2, rawStr + pos1);
}
else
{
//copy directly into new string
Char* const newStr = this->create(newLen);
std::copy(rawStr, rawStr + pos1, newStr);
std::copy(str.data(), str.data() + n2, newStr + pos1);
std::copy(rawStr + pos1 + n1, rawStr + oldLen + 1, newStr + pos1 + n2); //include null-termination
this->destroy(rawStr);
rawStr = newStr;
}
return *this;
}
template <class Char, template <class, class> class SP, class AP> inline
void Zbase<Char, SP, AP>::resize(size_t newSize, Char fillChar)
{
if (this->canWrite(rawStr, newSize))
{
if (length() < newSize)
std::fill(rawStr + length(), rawStr + newSize, fillChar);
rawStr[newSize] = 0;
this->setLength(rawStr, newSize); //keep after call to length()
}
else
{
Char* newStr = this->create(newSize);
newStr[newSize] = 0;
if (length() < newSize)
{
std::copy(rawStr, rawStr + length(), newStr);
std::fill(newStr + length(), newStr + newSize, fillChar);
}
else
std::copy(rawStr, rawStr + newSize, newStr);
this->destroy(rawStr);
rawStr = newStr;
}
}
template <class Char, template <class, class> class SP, class AP> inline
bool operator==(const Zbase<Char, SP, AP>& lhs, const Zbase<Char, SP, AP>& rhs)
{
return lhs.length() == rhs.length() && std::equal(lhs.begin(), lhs.end(), rhs.begin()); //respect embedded 0
}
template <class Char, template <class, class> class SP, class AP> inline
bool operator==(const Zbase<Char, SP, AP>& lhs, const Char* rhs)
{
return lhs.length() == strLength(rhs) && std::equal(lhs.begin(), lhs.end(), rhs); //respect embedded 0
}
template <class Char, template <class, class> class SP, class AP> inline
bool operator<(const Zbase<Char, SP, AP>& lhs, const Zbase<Char, SP, AP>& rhs)
{
return std::lexicographical_compare(lhs.begin(), lhs.end(), //respect embedded 0
rhs.begin(), rhs.end());
}
template <class Char, template <class, class> class SP, class AP> inline
bool operator<(const Zbase<Char, SP, AP>& lhs, const Char* rhs)
{
return std::lexicographical_compare(lhs.begin(), lhs.end(), //respect embedded 0
rhs, rhs + strLength(rhs));
}
template <class Char, template <class, class> class SP, class AP> inline
bool operator<(const Char* lhs, const Zbase<Char, SP, AP>& rhs)
{
return std::lexicographical_compare(lhs, lhs + strLength(lhs), //respect embedded 0
rhs.begin(), rhs.end());
}
template <class Char, template <class, class> class SP, class AP> inline
size_t Zbase<Char, SP, AP>::length() const
{
return SP<Char, AP>::length(rawStr);
}
template <class Char, template <class, class> class SP, class AP> inline
const Char Zbase<Char, SP, AP>::operator[](size_t pos) const
{
assert(pos < length());
return rawStr[pos];
}
template <class Char, template <class, class> class SP, class AP> inline
const Char* Zbase<Char, SP, AP>::begin() const
{
return rawStr;
}
template <class Char, template <class, class> class SP, class AP> inline
const Char* Zbase<Char, SP, AP>::end() const
{
return rawStr + length();
}
template <class Char, template <class, class> class SP, class AP> inline
Char* Zbase<Char, SP, AP>::begin()
{
reserve(length()); //make unshared!
return rawStr;
}
template <class Char, template <class, class> class SP, class AP> inline
Char* Zbase<Char, SP, AP>::end()
{
return begin() + length();
}
template <class Char, template <class, class> class SP, class AP> inline
void Zbase<Char, SP, AP>::clear()
{
if (!empty())
{
if (this->canWrite(rawStr, 0))
{
rawStr[0] = 0; //keep allocated memory
this->setLength(rawStr, 0); //
}
else
*this = Zbase();
}
}
template <class Char, template <class, class> class SP, class AP> inline
void Zbase<Char, SP, AP>::swap(Zbase<Char, SP, AP>& other)
{
std::swap(rawStr, other.rawStr);
}
template <class Char, template <class, class> class SP, class AP> inline
void Zbase<Char, SP, AP>::reserve(size_t minCapacity) //make unshared and check capacity
{
if (!this->canWrite(rawStr, minCapacity))
{
//allocate a new string
Char* newStr = this->create(length(), std::max(minCapacity, length())); //reserve() must NEVER shrink the string: logical const!
std::copy(rawStr, rawStr + length() + 1, newStr); //include 0-termination
this->destroy(rawStr);
rawStr = newStr;
}
}
template <class Char, template <class, class> class SP, class AP> inline
Zbase<Char, SP, AP>& Zbase<Char, SP, AP>::assign(const Char* source, size_t len)
{
if (this->canWrite(rawStr, len))
{
std::copy(source, source + len, rawStr);
rawStr[len] = 0; //include null-termination
this->setLength(rawStr, len);
}
else
*this = Zbase(source, len);
return *this;
}
template <class Char, template <class, class> class SP, class AP> inline
Zbase<Char, SP, AP>& Zbase<Char, SP, AP>::append(const Char* source, size_t len)
{
const size_t thisLen = length();
reserve(thisLen + len); //make unshared and check capacity
std::copy(source, source + len, rawStr + thisLen);
rawStr[thisLen + len] = 0;
this->setLength(rawStr, thisLen + len);
return *this;
}
template <class Char, template <class, class> class SP, class AP> inline
Zbase<Char, SP, AP>& Zbase<Char, SP, AP>::operator=(const Zbase<Char, SP, AP>& other)
{
Zbase<Char, SP, AP>(other).swap(*this);
return *this;
}
template <class Char, template <class, class> class SP, class AP> inline
Zbase<Char, SP, AP>& Zbase<Char, SP, AP>::operator=(Zbase<Char, SP, AP>&& tmp)
{
//don't use unifying assignment but save one move-construction in the r-value case instead!
swap(tmp);
return *this;
}
template <class Char, template <class, class> class SP, class AP> inline
Zbase<Char, SP, AP>& Zbase<Char, SP, AP>::operator=(const Char* source)
{
return assign(source, strLength(source));
}
template <class Char, template <class, class> class SP, class AP> inline
Zbase<Char, SP, AP>& Zbase<Char, SP, AP>::operator=(Char ch)
{
return assign(&ch, 1);
}
template <class Char, template <class, class> class SP, class AP> inline
Zbase<Char, SP, AP>& Zbase<Char, SP, AP>::operator+=(const Zbase<Char, SP, AP>& other)
{
return append(other.c_str(), other.length());
}
template <class Char, template <class, class> class SP, class AP> inline
Zbase<Char, SP, AP>& Zbase<Char, SP, AP>::operator+=(const Char* other)
{
return append(other, strLength(other));
}
template <class Char, template <class, class> class SP, class AP> inline
Zbase<Char, SP, AP>& Zbase<Char, SP, AP>::operator+=(Char ch)
{
return append(&ch, 1);
}
}
#endif //Z_BASE_H_INCLUDED
|