// ************************************************************************** // * This file is part of the FreeFileSync project. It is distributed under * // * GNU General Public License: http://www.gnu.org/licenses/gpl.html * // * Copyright (C) 2008-2011 ZenJu (zhnmju123 AT gmx.de) * // ************************************************************************** #ifndef BASIC_MATH_HEADER_34726398432 #define BASIC_MATH_HEADER_34726398432 #include #include #include #include namespace numeric { template T abs(T value); template T dist(T a, T b); template int sign(T value); //returns -1/0/1 template const T& min(const T& a, const T& b, const T& c); template const T& max(const T& a, const T& b, const T& c); template void confine(T& val, const T& minVal, const T& maxVal); //make sure minVal <= val && val <= maxVal template std::pair minMaxElement(InputIterator first, InputIterator last); template std::pair minMaxElement(InputIterator first, InputIterator last, Compare comp); template bool isNull(T value); int round(double d); //little rounding function template T power(const T& value); double radToDeg(double rad); //convert unit [rad] into [°] double degToRad(double degree); //convert unit [°] into [rad] template double arithmeticMean(InputIterator first, InputIterator last); template double median(RandomAccessIterator first, RandomAccessIterator last); //note: invalidates input range! template double stdDeviation(InputIterator first, InputIterator last, double* mean = NULL); //estimate standard deviation (and thereby arithmetic mean) //median absolute deviation: "mad / 0.6745" is a robust measure for standard deviation of a normal distribution template double mad(RandomAccessIterator first, RandomAccessIterator last); //note: invalidates input range! template double norm2(InputIterator first, InputIterator last); //constants const double pi = 3.14159265358979323846; const double e = 2.71828182845904523536; const double sqrt2 = 1.41421356237309504880; const double ln2 = 0.693147180559945309417; //---------------------------------------------------------------------------------- //################# inline implementation ######################### template inline T abs(T value) { return value < 0 ? -1 * value : value; } template inline T dist(T a, T b) { return a > b ? a - b : b - a; } template inline int sign(T value) //returns -1/0/1 { return value < 0 ? -1 : (value > 0 ? 1 : 0); } template inline const T& min(const T& a, const T& b, const T& c) { return std::min(std::min(a, b), c); } template inline const T& max(const T& a, const T& b, const T& c) { return std::max(std::max(a, b), c); } template inline void confine(T& val, const T& minVal, const T& maxVal) { assert(minVal <= maxVal); if (val < minVal) val = minVal; else if (val > maxVal) val = maxVal; } template inline std::pair minMaxElement(InputIterator first, InputIterator last, Compare comp) { InputIterator lowest = first; InputIterator largest = first; if (first != last) while (++first != last) { if (comp(*largest, *first)) // or: if (comp(*largest,*lowest)) for the comp version largest = first; else if (comp(*first, *lowest)) lowest = first; } return std::make_pair(lowest, largest); } template inline std::pair minMaxElement(InputIterator first, InputIterator last) { return minMaxElement(first, last, std::less::value_type>()); } template inline bool isNull(T value) { return abs(value) <= std::numeric_limits::epsilon(); //epsilon is 0 für integral types => less-equal } inline int round(double d) { return static_cast(d < 0 ? d - 0.5 : d + 0.5); } namespace { template struct PowerImpl { static T result(const T& value) { return PowerImpl::result(value) * value; } }; template struct PowerImpl<2, T> { static T result(const T& value) { return value * value; } }; template struct PowerImpl<0, T>; //not defined: invalidates power<0> and power<1> template struct PowerImpl<10, T>; //not defined: invalidates power for N >= 10 } template inline T power(const T& value) { return PowerImpl::result(value); } inline double radToDeg(double rad) { return rad * 180.0 / numeric::pi; } inline double degToRad(double degree) { return degree * numeric::pi / 180.0; } template inline double arithmeticMean(InputIterator first, InputIterator last) { //low level implementation to avoid random-access requirement on iterator size_t n = 0; double sum_xi = 0; for (; first != last; ++first, ++n) sum_xi += *first; return n == 0 ? 0 : sum_xi / n; } template inline double median(RandomAccessIterator first, RandomAccessIterator last) //note: invalidates input range! { const size_t n = last - first; if (n > 0) { std::nth_element(first, first + n / 2, last); //complexity: O(n) const double midVal = *(first + n / 2); if (n % 2 != 0) return midVal; else //n is even and >= 2 in this context: return mean of two middle values return 0.5 * (*std::max_element(first, first + n / 2) + midVal); //this operation is the reason why median() CANNOT support a comparison predicate!!! } return 0; } class LessMinusMedAbs : public std::binary_function { public: LessMinusMedAbs(double median) : median_(median) {} bool operator()(double lhs, double rhs) const { return abs(lhs - median_) < abs(rhs - median_); } private: double median_; }; template inline double mad(RandomAccessIterator first, RandomAccessIterator last) //note: invalidates input range! { //http://en.wikipedia.org/wiki/Median_absolute_deviation const size_t n = last - first; if (n > 0) { const double m = median(first, last); //the second median needs to operate on absolute residuals => avoid transforming input range as it may decrease precision! std::nth_element(first, first + n / 2, last, LessMinusMedAbs(m)); //complexity: O(n) const double midVal = abs(*(first + n / 2) - m); if (n % 2 != 0) return midVal; else //n is even and >= 2 in this context: return mean of two middle values { const double midVal2 = abs(*std::max_element(first, first + n / 2, LessMinusMedAbs(m)) - m); return 0.5 * (midVal2 + midVal); } } return 0; } template inline double stdDeviation(InputIterator first, InputIterator last, double* arithMean) { //implementation minimizing rounding errors, see: http://en.wikipedia.org/wiki/Standard_deviation //combined with techinque avoiding overflow, see: http://www.netlib.org/blas/dnrm2.f -> only 10% performance degregation size_t n = 0; double mean = 0; double q = 0; double scale = 1; for (; first != last; ++first) { ++n; const double val = *first - mean; if (abs(val) > scale) { q = (n - 1.0) / n + q * power<2>(scale / val); scale = abs(val); } else q += (n - 1.0) * power<2>(val / scale) / n; mean += val / n; } if (arithMean) *arithMean = mean; return n <= 1 ? 0 : std::sqrt(q / (n - 1)) * scale; } template inline double norm2(InputIterator first, InputIterator last) { double result = 0; double scale = 1; for (; first != last; ++first) { const double tmp = abs(*first); if (tmp > scale) { result = 1 + result * power<2>(scale / tmp); scale = tmp; } else result += power<2>(tmp / scale); } return std::sqrt(result) * scale; } } #endif //BASIC_MATH_HEADER_34726398432