// ***************************************************************************** // * This file is part of the FreeFileSync project. It is distributed under * // * GNU General Public License: https://www.gnu.org/licenses/gpl-3.0 * // * Copyright (C) Zenju (zenju AT freefilesync DOT org) - All Rights Reserved * // ***************************************************************************** #ifndef BASIC_MATH_H_3472639843265675 #define BASIC_MATH_H_3472639843265675 #include #include #include #include #include #include #include "type_traits.h" namespace numeric { template T abs(T value); template auto dist(T a, T b); template int sign(T value); //returns one of {-1, 0, 1} template T min(T a, T b, T c); template T max(T a, T b, T c); template bool isNull(T value); template void clamp(T& val, T minVal, T maxVal); //make sure minVal <= val && val <= maxVal template T clampCpy(T val, T minVal, T maxVal); //std::clamp() available with C++17 template //precondition: range must be sorted! auto nearMatch(const T& val, InputIterator first, InputIterator last); int64_t round(double d); //"little rounding function" template auto integerDivideRoundUp(N numerator, D denominator); template T power(T value); double radToDeg(double rad); //convert unit [rad] into [°] double degToRad(double degree); //convert unit [°] into [rad] template double arithmeticMean(InputIterator first, InputIterator last); template double median(RandomAccessIterator first, RandomAccessIterator last); //note: invalidates input range! template double stdDeviation(InputIterator first, InputIterator last, double* mean = nullptr); //estimate standard deviation (and thereby arithmetic mean) //median absolute deviation: "mad / 0.6745" is a robust measure for standard deviation of a normal distribution template double mad(RandomAccessIterator first, RandomAccessIterator last); //note: invalidates input range! template double norm2(InputIterator first, InputIterator last); //constants const double pi = 3.14159265358979323846; const double e = 2.71828182845904523536; const double sqrt2 = 1.41421356237309504880; const double ln2 = 0.693147180559945309417; //static_assert(pi + e + sqrt2 + ln2 == 7.9672352249818781, "whoopsie"); //---------------------------------------------------------------------------------- //################# inline implementation ######################### template inline T abs(T value) { //static_assert(std::is_signed_v); if (value < 0) return -value; //operator "?:" caveat: may be different type than "value" else return value; } template inline auto dist(T a, T b) //return type might be different than T, e.g. std::chrono::duration instead of std::chrono::time_point { return a > b ? a - b : b - a; } template inline int sign(T value) //returns one of {-1, 0, 1} { static_assert(std::is_signed_v); return value < 0 ? -1 : (value > 0 ? 1 : 0); } template inline T min(T a, T b, T c) //don't follow std::min's "const T&(const T&, const T&)" API { if (a < b) return a < c ? a : c; else return b < c ? b : c; //return std::min(std::min(a, b), c); } template inline T max(T a, T b, T c) { if (a > b) return a > c ? a : c; else return b > c ? b : c; //return std::max(std::max(a, b), c); } template inline T clampCpy(T val, T minVal, T maxVal) { assert(minVal <= maxVal); if (val < minVal) return minVal; else if (val > maxVal) return maxVal; return val; } template inline void clamp(T& val, T minVal, T maxVal) { assert(minVal <= maxVal); if (val < minVal) val = minVal; else if (val > maxVal) val = maxVal; } /* part of C++11 now! template inline std::pair minMaxElement(InputIterator first, InputIterator last, Compare compLess) { //by factor 1.5 to 3 faster than boost::minmax_element (=two-step algorithm) for built-in types! InputIterator lowest = first; InputIterator largest = first; if (first != last) { auto minVal = *lowest; //nice speedup on 64 bit! auto maxVal = *largest; // for (;;) { ++first; if (first == last) break; const auto val = *first; if (compLess(maxVal, val)) { largest = first; maxVal = val; } else if (compLess(val, minVal)) { lowest = first; minVal = val; } } } return { lowest, largest }; } template inline std::pair minMaxElement(InputIterator first, InputIterator last) { return minMaxElement(first, last, std::less::value_type>()); } */ template inline auto nearMatch(const T& val, InputIterator first, InputIterator last) { if (first == last) return static_cast(0); assert(std::is_sorted(first, last)); InputIterator it = std::lower_bound(first, last, val); if (it == last) return *--last; if (it == first) return *first; const auto nextVal = *it; const auto prevVal = *--it; return val - prevVal < nextVal - val ? prevVal : nextVal; } template inline bool isNull(T value) { return abs(value) <= std::numeric_limits::epsilon(); //epsilon is 0 für integral types => less-equal } inline int64_t round(double d) { assert(d - 0.5 >= std::numeric_limits::min() && //if double is larger than what int can represent: d + 0.5 <= std::numeric_limits::max()); //=> undefined behavior! return static_cast(d < 0 ? d - 0.5 : d + 0.5); } template inline auto integerDivideRoundUp(N numerator, D denominator) { static_assert(zen::IsInteger::value); static_assert(zen::IsInteger::value); assert(numerator > 0 && denominator > 0); return (numerator + denominator - 1) / denominator; } namespace { template struct PowerImpl; /* template -> let's use non-recursive specializations to help the compiler struct PowerImpl { static T result(const T& value) { return PowerImpl::result(value) * value; } }; */ template struct PowerImpl<2, T> { static T result(T value) { return value * value; } }; template struct PowerImpl<3, T> { static T result(T value) { return value * value * value; } }; } template inline T power(T value) { return PowerImpl::result(value); } inline double radToDeg(double rad) { return rad * 180.0 / numeric::pi; } inline double degToRad(double degree) { return degree * numeric::pi / 180.0; } template inline double arithmeticMean(InputIterator first, InputIterator last) { size_t n = 0; //avoid random-access requirement for iterator! double sum_xi = 0; for (; first != last; ++first, ++n) sum_xi += *first; return n == 0 ? 0 : sum_xi / n; } template inline double median(RandomAccessIterator first, RandomAccessIterator last) //note: invalidates input range! { const size_t n = last - first; if (n == 0) return 0; std::nth_element(first, first + n / 2, last); //complexity: O(n) const double midVal = *(first + n / 2); if (n % 2 != 0) return midVal; else //n is even and >= 2 in this context: return mean of two middle values return 0.5 * (*std::max_element(first, first + n / 2) + midVal); //this operation is the reason why median() CANNOT support a comparison predicate!!! } template inline double mad(RandomAccessIterator first, RandomAccessIterator last) //note: invalidates input range! { //http://en.wikipedia.org/wiki/Median_absolute_deviation const size_t n = last - first; if (n == 0) return 0; const double m = median(first, last); //the second median needs to operate on absolute residuals => avoid transforming input range which may have less than double precision! auto lessMedAbs = [m](double lhs, double rhs) { return abs(lhs - m) < abs(rhs - m); }; std::nth_element(first, first + n / 2, last, lessMedAbs); //complexity: O(n) const double midVal = abs(*(first + n / 2) - m); if (n % 2 != 0) return midVal; else //n is even and >= 2 in this context: return mean of two middle values return 0.5 * (abs(*std::max_element(first, first + n / 2, lessMedAbs) - m) + midVal); } template inline double stdDeviation(InputIterator first, InputIterator last, double* arithMean) { //implementation minimizing rounding errors, see: http://en.wikipedia.org/wiki/Standard_deviation //combined with technique avoiding overflow, see: http://www.netlib.org/blas/dnrm2.f -> only 10% performance degradation size_t n = 0; double mean = 0; double q = 0; double scale = 1; for (; first != last; ++first) { ++n; const double val = *first - mean; if (abs(val) > scale) { q = (n - 1.0) / n + q * power<2>(scale / val); scale = abs(val); } else q += (n - 1.0) * power<2>(val / scale) / n; mean += val / n; } if (arithMean) *arithMean = mean; return n <= 1 ? 0 : std::sqrt(q / (n - 1)) * scale; } template inline double norm2(InputIterator first, InputIterator last) { double result = 0; double scale = 1; for (; first != last; ++first) { const double tmp = abs(*first); if (tmp > scale) { result = 1 + result * power<2>(scale / tmp); scale = tmp; } else result += power<2>(tmp / scale); } return std::sqrt(result) * scale; } } #endif //BASIC_MATH_H_3472639843265675