// **************************************************************************** // * This file is part of the xBRZ project. It is distributed under * // * GNU General Public License: https://www.gnu.org/licenses/gpl-3.0 * // * Copyright (C) Zenju (zenju AT gmx DOT de) - All Rights Reserved * // * * // * Additionally and as a special exception, the author gives permission * // * to link the code of this program with the following libraries * // * (or with modified versions that use the same licenses), and distribute * // * linked combinations including the two: MAME, FreeFileSync, Snes9x, ePSXe * // * You must obey the GNU General Public License in all respects for all of * // * the code used other than MAME, FreeFileSync, Snes9x, ePSXe. * // * If you modify this file, you may extend this exception to your version * // * of the file, but you are not obligated to do so. If you do not wish to * // * do so, delete this exception statement from your version. * // **************************************************************************** #include "xbrz.h" #include #include #include #include //std::sqrt #include "xbrz_tools.h" using namespace xbrz; namespace { template inline uint32_t gradientRGB(uint32_t pixFront, uint32_t pixBack) //blend front color with opacity M / N over opaque background: http://en.wikipedia.org/wiki/Alpha_compositing#Alpha_blending { static_assert(0 < M && M < N && N <= 1000, ""); auto calcColor = [](unsigned char colFront, unsigned char colBack) -> unsigned char { return (colFront * M + colBack * (N - M)) / N; }; return makePixel(calcColor(getRed (pixFront), getRed (pixBack)), calcColor(getGreen(pixFront), getGreen(pixBack)), calcColor(getBlue (pixFront), getBlue (pixBack))); } template inline uint32_t gradientARGB(uint32_t pixFront, uint32_t pixBack) //find intermediate color between two colors with alpha channels (=> NO alpha blending!!!) { static_assert(0 < M && M < N && N <= 1000, ""); const unsigned int weightFront = getAlpha(pixFront) * M; const unsigned int weightBack = getAlpha(pixBack) * (N - M); const unsigned int weightSum = weightFront + weightBack; if (weightSum == 0) return 0; auto calcColor = [=](unsigned char colFront, unsigned char colBack) { return static_cast((colFront * weightFront + colBack * weightBack) / weightSum); }; return makePixel(static_cast(weightSum / N), calcColor(getRed (pixFront), getRed (pixBack)), calcColor(getGreen(pixFront), getGreen(pixBack)), calcColor(getBlue (pixFront), getBlue (pixBack))); } //inline //double fastSqrt(double n) //{ // __asm //speeds up xBRZ by about 9% compared to std::sqrt which internally uses the same assembler instructions but adds some "fluff" // { // fld n // fsqrt // } //} // #if defined __GNUC__ #define FORCE_INLINE __attribute__((always_inline)) inline #else #define FORCE_INLINE inline #endif enum RotationDegree //clock-wise { ROT_0, ROT_90, ROT_180, ROT_270 }; //calculate input matrix coordinates after rotation at compile time template struct MatrixRotation; template struct MatrixRotation { static const size_t I_old = I; static const size_t J_old = J; }; template //(i, j) = (row, col) indices, N = size of (square) matrix struct MatrixRotation { static const size_t I_old = N - 1 - MatrixRotation(rotDeg - 1), I, J, N>::J_old; //old coordinates before rotation! static const size_t J_old = MatrixRotation(rotDeg - 1), I, J, N>::I_old; // }; template class OutputMatrix { public: OutputMatrix(uint32_t* out, int outWidth) : //access matrix area, top-left at position "out" for image with given width out_(out), outWidth_(outWidth) {} template uint32_t& ref() const { static const size_t I_old = MatrixRotation::I_old; static const size_t J_old = MatrixRotation::J_old; return *(out_ + J_old + I_old * outWidth_); } private: uint32_t* out_; const int outWidth_; }; template inline T square(T value) { return value * value; } #if 0 inline double distRGB(uint32_t pix1, uint32_t pix2) { const double r_diff = static_cast(getRed (pix1)) - getRed (pix2); const double g_diff = static_cast(getGreen(pix1)) - getGreen(pix2); const double b_diff = static_cast(getBlue (pix1)) - getBlue (pix2); //euklidean RGB distance return std::sqrt(square(r_diff) + square(g_diff) + square(b_diff)); } #endif inline double distYCbCr(uint32_t pix1, uint32_t pix2, double lumaWeight) { //http://en.wikipedia.org/wiki/YCbCr#ITU-R_BT.601_conversion //YCbCr conversion is a matrix multiplication => take advantage of linearity by subtracting first! const int r_diff = static_cast(getRed (pix1)) - getRed (pix2); //we may delay division by 255 to after matrix multiplication const int g_diff = static_cast(getGreen(pix1)) - getGreen(pix2); // const int b_diff = static_cast(getBlue (pix1)) - getBlue (pix2); //substraction for int is noticeable faster than for double! //const double k_b = 0.0722; //ITU-R BT.709 conversion //const double k_r = 0.2126; // const double k_b = 0.0593; //ITU-R BT.2020 conversion const double k_r = 0.2627; // const double k_g = 1 - k_b - k_r; const double scale_b = 0.5 / (1 - k_b); const double scale_r = 0.5 / (1 - k_r); const double y = k_r * r_diff + k_g * g_diff + k_b * b_diff; //[!], analog YCbCr! const double c_b = scale_b * (b_diff - y); const double c_r = scale_r * (r_diff - y); //we skip division by 255 to have similar range like other distance functions return std::sqrt(square(lumaWeight * y) + square(c_b) + square(c_r)); } inline double distYCbCrBuffered(uint32_t pix1, uint32_t pix2) { //30% perf boost compared to plain distYCbCr()! //consumes 64 MB memory; using double is only 2% faster, but takes 128 MB static const std::vector diffToDist = [] { std::vector tmp; for (uint32_t i = 0; i < 256 * 256 * 256; ++i) //startup time: 114 ms on Intel Core i5 (four cores) { const int r_diff = static_cast(getByte<2>(i)) * 2; const int g_diff = static_cast(getByte<1>(i)) * 2; const int b_diff = static_cast(getByte<0>(i)) * 2; const double k_b = 0.0593; //ITU-R BT.2020 conversion const double k_r = 0.2627; // const double k_g = 1 - k_b - k_r; const double scale_b = 0.5 / (1 - k_b); const double scale_r = 0.5 / (1 - k_r); const double y = k_r * r_diff + k_g * g_diff + k_b * b_diff; //[!], analog YCbCr! const double c_b = scale_b * (b_diff - y); const double c_r = scale_r * (r_diff - y); tmp.push_back(static_cast(std::sqrt(square(y) + square(c_b) + square(c_r)))); } return tmp; }(); //if (pix1 == pix2) -> 8% perf degradation! // return 0; //if (pix1 < pix2) // std::swap(pix1, pix2); -> 30% perf degradation!!! const int r_diff = static_cast(getRed (pix1)) - getRed (pix2); const int g_diff = static_cast(getGreen(pix1)) - getGreen(pix2); const int b_diff = static_cast(getBlue (pix1)) - getBlue (pix2); const size_t index = (static_cast(r_diff / 2) << 16) | //slightly reduce precision (division by 2) to squeeze value into single byte (static_cast(g_diff / 2) << 8) | (static_cast(b_diff / 2)); #if 0 //attention: the following calculation creates an asymmetric color distance!!! (e.g. r_diff=46 will be unpacked as 45, but r_diff=-46 unpacks to -47 const size_t index = (((r_diff + 0xFF) / 2) << 16) | //slightly reduce precision (division by 2) to squeeze value into single byte (((g_diff + 0xFF) / 2) << 8) | (( b_diff + 0xFF) / 2); #endif return diffToDist[index]; } enum BlendType { BLEND_NONE = 0, BLEND_NORMAL, //a normal indication to blend BLEND_DOMINANT, //a strong indication to blend //attention: BlendType must fit into the value range of 2 bit!!! }; struct BlendResult { BlendType /**/blend_f, blend_g, /**/blend_j, blend_k; }; struct Kernel_4x4 //kernel for preprocessing step { uint32_t /**/a, b, c, d, /**/e, f, g, h, /**/i, j, k, l, /**/m, n, o, p; }; /* input kernel area naming convention: ----------------- | A | B | C | D | ----|---|---|---| | E | F | G | H | //evaluate the four corners between F, G, J, K ----|---|---|---| //input pixel is at position F | I | J | K | L | ----|---|---|---| | M | N | O | P | ----------------- */ template FORCE_INLINE //detect blend direction BlendResult preProcessCorners(const Kernel_4x4& ker, const xbrz::ScalerCfg& cfg) //result: F, G, J, K corners of "GradientType" { BlendResult result = {}; if ((ker.f == ker.g && ker.j == ker.k) || (ker.f == ker.j && ker.g == ker.k)) return result; auto dist = [&](uint32_t pix1, uint32_t pix2) { return ColorDistance::dist(pix1, pix2, cfg.luminanceWeight); }; double jg = dist(ker.i, ker.f) + dist(ker.f, ker.c) + dist(ker.n, ker.k) + dist(ker.k, ker.h) + cfg.centerDirectionBias * dist(ker.j, ker.g); double fk = dist(ker.e, ker.j) + dist(ker.j, ker.o) + dist(ker.b, ker.g) + dist(ker.g, ker.l) + cfg.centerDirectionBias * dist(ker.f, ker.k); if (jg < fk) //test sample: 70% of values max(jg, fk) / min(jg, fk) are between 1.1 and 3.7 with median being 1.8 { const bool dominantGradient = cfg.dominantDirectionThreshold * jg < fk; if (ker.f != ker.g && ker.f != ker.j) result.blend_f = dominantGradient ? BLEND_DOMINANT : BLEND_NORMAL; if (ker.k != ker.j && ker.k != ker.g) result.blend_k = dominantGradient ? BLEND_DOMINANT : BLEND_NORMAL; } else if (fk < jg) { const bool dominantGradient = cfg.dominantDirectionThreshold * fk < jg; if (ker.j != ker.f && ker.j != ker.k) result.blend_j = dominantGradient ? BLEND_DOMINANT : BLEND_NORMAL; if (ker.g != ker.f && ker.g != ker.k) result.blend_g = dominantGradient ? BLEND_DOMINANT : BLEND_NORMAL; } return result; } struct Kernel_3x3 { uint32_t /**/a, b, c, /**/d, e, f, /**/g, h, i; }; #define DEF_GETTER(x) template uint32_t inline get_##x(const Kernel_3x3& ker) { return ker.x; } //we cannot and NEED NOT write "ker.##x" since ## concatenates preprocessor tokens but "." is not a token DEF_GETTER(a) DEF_GETTER(b) DEF_GETTER(c) DEF_GETTER(d) DEF_GETTER(e) DEF_GETTER(f) DEF_GETTER(g) DEF_GETTER(h) DEF_GETTER(i) #undef DEF_GETTER #define DEF_GETTER(x, y) template <> inline uint32_t get_##x(const Kernel_3x3& ker) { return ker.y; } DEF_GETTER(a, g) DEF_GETTER(b, d) DEF_GETTER(c, a) DEF_GETTER(d, h) DEF_GETTER(e, e) DEF_GETTER(f, b) DEF_GETTER(g, i) DEF_GETTER(h, f) DEF_GETTER(i, c) #undef DEF_GETTER #define DEF_GETTER(x, y) template <> inline uint32_t get_##x(const Kernel_3x3& ker) { return ker.y; } DEF_GETTER(a, i) DEF_GETTER(b, h) DEF_GETTER(c, g) DEF_GETTER(d, f) DEF_GETTER(e, e) DEF_GETTER(f, d) DEF_GETTER(g, c) DEF_GETTER(h, b) DEF_GETTER(i, a) #undef DEF_GETTER #define DEF_GETTER(x, y) template <> inline uint32_t get_##x(const Kernel_3x3& ker) { return ker.y; } DEF_GETTER(a, c) DEF_GETTER(b, f) DEF_GETTER(c, i) DEF_GETTER(d, b) DEF_GETTER(e, e) DEF_GETTER(f, h) DEF_GETTER(g, a) DEF_GETTER(h, d) DEF_GETTER(i, g) #undef DEF_GETTER //compress four blend types into a single byte //inline BlendType getTopL (unsigned char b) { return static_cast(0x3 & b); } inline BlendType getTopR (unsigned char b) { return static_cast(0x3 & (b >> 2)); } inline BlendType getBottomR(unsigned char b) { return static_cast(0x3 & (b >> 4)); } inline BlendType getBottomL(unsigned char b) { return static_cast(0x3 & (b >> 6)); } inline void setTopL (unsigned char& b, BlendType bt) { b |= bt; } //buffer is assumed to be initialized before preprocessing! inline void setTopR (unsigned char& b, BlendType bt) { b |= (bt << 2); } inline void setBottomR(unsigned char& b, BlendType bt) { b |= (bt << 4); } inline void setBottomL(unsigned char& b, BlendType bt) { b |= (bt << 6); } inline bool blendingNeeded(unsigned char b) { return b != 0; } template inline unsigned char rotateBlendInfo(unsigned char b) { return b; } template <> inline unsigned char rotateBlendInfo(unsigned char b) { return ((b << 2) | (b >> 6)) & 0xff; } template <> inline unsigned char rotateBlendInfo(unsigned char b) { return ((b << 4) | (b >> 4)) & 0xff; } template <> inline unsigned char rotateBlendInfo(unsigned char b) { return ((b << 6) | (b >> 2)) & 0xff; } /* input kernel area naming convention: ------------- | A | B | C | ----|---|---| | D | E | F | //input pixel is at position E ----|---|---| | G | H | I | ------------- */ template FORCE_INLINE //perf: quite worth it! void blendPixel(const Kernel_3x3& ker, uint32_t* target, int trgWidth, unsigned char blendInfo, //result of preprocessing all four corners of pixel "e" const xbrz::ScalerCfg& cfg) { #define a get_a(ker) #define b get_b(ker) #define c get_c(ker) #define d get_d(ker) #define e get_e(ker) #define f get_f(ker) #define g get_g(ker) #define h get_h(ker) #define i get_i(ker) (void)a; //silence Clang's -Wunused-function const unsigned char blend = rotateBlendInfo(blendInfo); if (getBottomR(blend) >= BLEND_NORMAL) { auto eq = [&](uint32_t pix1, uint32_t pix2) { return ColorDistance::dist(pix1, pix2, cfg.luminanceWeight) < cfg.equalColorTolerance; }; auto dist = [&](uint32_t pix1, uint32_t pix2) { return ColorDistance::dist(pix1, pix2, cfg.luminanceWeight); }; const bool doLineBlend = [&]() -> bool { if (getBottomR(blend) >= BLEND_DOMINANT) return true; //make sure there is no second blending in an adjacent rotation for this pixel: handles insular pixels, mario eyes if (getTopR(blend) != BLEND_NONE && !eq(e, g)) //but support double-blending for 90° corners return false; if (getBottomL(blend) != BLEND_NONE && !eq(e, c)) return false; //no full blending for L-shapes; blend corner only (handles "mario mushroom eyes") if (!eq(e, i) && eq(g, h) && eq(h, i) && eq(i, f) && eq(f, c)) return false; return true; }(); const uint32_t px = dist(e, f) <= dist(e, h) ? f : h; //choose most similar color OutputMatrix out(target, trgWidth); if (doLineBlend) { const double fg = dist(f, g); //test sample: 70% of values max(fg, hc) / min(fg, hc) are between 1.1 and 3.7 with median being 1.9 const double hc = dist(h, c); // const bool haveShallowLine = cfg.steepDirectionThreshold * fg <= hc && e != g && d != g; const bool haveSteepLine = cfg.steepDirectionThreshold * hc <= fg && e != c && b != c; if (haveShallowLine) { if (haveSteepLine) Scaler::blendLineSteepAndShallow(px, out); else Scaler::blendLineShallow(px, out); } else { if (haveSteepLine) Scaler::blendLineSteep(px, out); else Scaler::blendLineDiagonal(px, out); } } else Scaler::blendCorner(px, out); } #undef a #undef b #undef c #undef d #undef e #undef f #undef g #undef h #undef i } template //scaler policy: see "Scaler2x" reference implementation void scaleImage(const uint32_t* src, uint32_t* trg, int srcWidth, int srcHeight, const xbrz::ScalerCfg& cfg, int yFirst, int yLast) { yFirst = std::max(yFirst, 0); yLast = std::min(yLast, srcHeight); if (yFirst >= yLast || srcWidth <= 0) return; const int trgWidth = srcWidth * Scaler::scale; //"use" space at the end of the image as temporary buffer for "on the fly preprocessing": we even could use larger area of //"sizeof(uint32_t) * srcWidth * (yLast - yFirst)" bytes without risk of accidental overwriting before accessing const int bufferSize = srcWidth; unsigned char* preProcBuffer = reinterpret_cast(trg + yLast * Scaler::scale * trgWidth) - bufferSize; std::fill(preProcBuffer, preProcBuffer + bufferSize, '\0'); static_assert(BLEND_NONE == 0, ""); //initialize preprocessing buffer for first row of current stripe: detect upper left and right corner blending //this cannot be optimized for adjacent processing stripes; we must not allow for a memory race condition! if (yFirst > 0) { const int y = yFirst - 1; const uint32_t* s_m1 = src + srcWidth * std::max(y - 1, 0); const uint32_t* s_0 = src + srcWidth * y; //center line const uint32_t* s_p1 = src + srcWidth * std::min(y + 1, srcHeight - 1); const uint32_t* s_p2 = src + srcWidth * std::min(y + 2, srcHeight - 1); for (int x = 0; x < srcWidth; ++x) { const int x_m1 = std::max(x - 1, 0); const int x_p1 = std::min(x + 1, srcWidth - 1); const int x_p2 = std::min(x + 2, srcWidth - 1); Kernel_4x4 ker = {}; //perf: initialization is negligible ker.a = s_m1[x_m1]; //read sequentially from memory as far as possible ker.b = s_m1[x]; ker.c = s_m1[x_p1]; ker.d = s_m1[x_p2]; ker.e = s_0[x_m1]; ker.f = s_0[x]; ker.g = s_0[x_p1]; ker.h = s_0[x_p2]; ker.i = s_p1[x_m1]; ker.j = s_p1[x]; ker.k = s_p1[x_p1]; ker.l = s_p1[x_p2]; ker.m = s_p2[x_m1]; ker.n = s_p2[x]; ker.o = s_p2[x_p1]; ker.p = s_p2[x_p2]; const BlendResult res = preProcessCorners(ker, cfg); /* preprocessing blend result: --------- | F | G | //evalute corner between F, G, J, K ----|---| //input pixel is at position F | J | K | --------- */ setTopR(preProcBuffer[x], res.blend_j); if (x + 1 < bufferSize) setTopL(preProcBuffer[x + 1], res.blend_k); } } //------------------------------------------------------------------------------------ for (int y = yFirst; y < yLast; ++y) { uint32_t* out = trg + Scaler::scale * y * trgWidth; //consider MT "striped" access const uint32_t* s_m1 = src + srcWidth * std::max(y - 1, 0); const uint32_t* s_0 = src + srcWidth * y; //center line const uint32_t* s_p1 = src + srcWidth * std::min(y + 1, srcHeight - 1); const uint32_t* s_p2 = src + srcWidth * std::min(y + 2, srcHeight - 1); unsigned char blend_xy1 = 0; //corner blending for current (x, y + 1) position for (int x = 0; x < srcWidth; ++x, out += Scaler::scale) { //all those bounds checks have only insignificant impact on performance! const int x_m1 = std::max(x - 1, 0); //perf: prefer array indexing to additional pointers! const int x_p1 = std::min(x + 1, srcWidth - 1); const int x_p2 = std::min(x + 2, srcWidth - 1); Kernel_4x4 ker4 = {}; //perf: initialization is negligible ker4.a = s_m1[x_m1]; //read sequentially from memory as far as possible ker4.b = s_m1[x]; ker4.c = s_m1[x_p1]; ker4.d = s_m1[x_p2]; ker4.e = s_0[x_m1]; ker4.f = s_0[x]; ker4.g = s_0[x_p1]; ker4.h = s_0[x_p2]; ker4.i = s_p1[x_m1]; ker4.j = s_p1[x]; ker4.k = s_p1[x_p1]; ker4.l = s_p1[x_p2]; ker4.m = s_p2[x_m1]; ker4.n = s_p2[x]; ker4.o = s_p2[x_p1]; ker4.p = s_p2[x_p2]; //evaluate the four corners on bottom-right of current pixel unsigned char blend_xy = 0; //for current (x, y) position { const BlendResult res = preProcessCorners(ker4, cfg); /* preprocessing blend result: --------- | F | G | //evalute corner between F, G, J, K ----|---| //current input pixel is at position F | J | K | --------- */ blend_xy = preProcBuffer[x]; setBottomR(blend_xy, res.blend_f); //all four corners of (x, y) have been determined at this point due to processing sequence! setTopR(blend_xy1, res.blend_j); //set 2nd known corner for (x, y + 1) preProcBuffer[x] = blend_xy1; //store on current buffer position for use on next row blend_xy1 = 0; setTopL(blend_xy1, res.blend_k); //set 1st known corner for (x + 1, y + 1) and buffer for use on next column if (x + 1 < bufferSize) //set 3rd known corner for (x + 1, y) setBottomL(preProcBuffer[x + 1], res.blend_g); } //fill block of size scale * scale with the given color fillBlock(out, trgWidth * sizeof(uint32_t), ker4.f, Scaler::scale, Scaler::scale); //place *after* preprocessing step, to not overwrite the results while processing the the last pixel! //blend four corners of current pixel if (blendingNeeded(blend_xy)) //good 5% perf-improvement { Kernel_3x3 ker3 = {}; //perf: initialization is negligible ker3.a = ker4.a; ker3.b = ker4.b; ker3.c = ker4.c; ker3.d = ker4.e; ker3.e = ker4.f; ker3.f = ker4.g; ker3.g = ker4.i; ker3.h = ker4.j; ker3.i = ker4.k; blendPixel(ker3, out, trgWidth, blend_xy, cfg); blendPixel(ker3, out, trgWidth, blend_xy, cfg); blendPixel(ker3, out, trgWidth, blend_xy, cfg); blendPixel(ker3, out, trgWidth, blend_xy, cfg); } } } } //------------------------------------------------------------------------------------ template struct Scaler2x : public ColorGradient { static const int scale = 2; template //bring template function into scope for GCC static void alphaGrad(uint32_t& pixBack, uint32_t pixFront) { ColorGradient::template alphaGrad(pixBack, pixFront); } template static void blendLineShallow(uint32_t col, OutputMatrix& out) { alphaGrad<1, 4>(out.template ref(), col); alphaGrad<3, 4>(out.template ref(), col); } template static void blendLineSteep(uint32_t col, OutputMatrix& out) { alphaGrad<1, 4>(out.template ref<0, scale - 1>(), col); alphaGrad<3, 4>(out.template ref<1, scale - 1>(), col); } template static void blendLineSteepAndShallow(uint32_t col, OutputMatrix& out) { alphaGrad<1, 4>(out.template ref<1, 0>(), col); alphaGrad<1, 4>(out.template ref<0, 1>(), col); alphaGrad<5, 6>(out.template ref<1, 1>(), col); //[!] fixes 7/8 used in xBR } template static void blendLineDiagonal(uint32_t col, OutputMatrix& out) { alphaGrad<1, 2>(out.template ref<1, 1>(), col); } template static void blendCorner(uint32_t col, OutputMatrix& out) { //model a round corner alphaGrad<21, 100>(out.template ref<1, 1>(), col); //exact: 1 - pi/4 = 0.2146018366 } }; template struct Scaler3x : public ColorGradient { static const int scale = 3; template //bring template function into scope for GCC static void alphaGrad(uint32_t& pixBack, uint32_t pixFront) { ColorGradient::template alphaGrad(pixBack, pixFront); } template static void blendLineShallow(uint32_t col, OutputMatrix& out) { alphaGrad<1, 4>(out.template ref(), col); alphaGrad<1, 4>(out.template ref(), col); alphaGrad<3, 4>(out.template ref(), col); out.template ref() = col; } template static void blendLineSteep(uint32_t col, OutputMatrix& out) { alphaGrad<1, 4>(out.template ref<0, scale - 1>(), col); alphaGrad<1, 4>(out.template ref<2, scale - 2>(), col); alphaGrad<3, 4>(out.template ref<1, scale - 1>(), col); out.template ref<2, scale - 1>() = col; } template static void blendLineSteepAndShallow(uint32_t col, OutputMatrix& out) { alphaGrad<1, 4>(out.template ref<2, 0>(), col); alphaGrad<1, 4>(out.template ref<0, 2>(), col); alphaGrad<3, 4>(out.template ref<2, 1>(), col); alphaGrad<3, 4>(out.template ref<1, 2>(), col); out.template ref<2, 2>() = col; } template static void blendLineDiagonal(uint32_t col, OutputMatrix& out) { alphaGrad<1, 8>(out.template ref<1, 2>(), col); //conflict with other rotations for this odd scale alphaGrad<1, 8>(out.template ref<2, 1>(), col); alphaGrad<7, 8>(out.template ref<2, 2>(), col); // } template static void blendCorner(uint32_t col, OutputMatrix& out) { //model a round corner alphaGrad<45, 100>(out.template ref<2, 2>(), col); //exact: 0.4545939598 //alphaGrad<7, 256>(out.template ref<2, 1>(), col); //0.02826017254 -> negligible + avoid conflicts with other rotations for this odd scale //alphaGrad<7, 256>(out.template ref<1, 2>(), col); //0.02826017254 } }; template struct Scaler4x : public ColorGradient { static const int scale = 4; template //bring template function into scope for GCC static void alphaGrad(uint32_t& pixBack, uint32_t pixFront) { ColorGradient::template alphaGrad(pixBack, pixFront); } template static void blendLineShallow(uint32_t col, OutputMatrix& out) { alphaGrad<1, 4>(out.template ref(), col); alphaGrad<1, 4>(out.template ref(), col); alphaGrad<3, 4>(out.template ref(), col); alphaGrad<3, 4>(out.template ref(), col); out.template ref() = col; out.template ref() = col; } template static void blendLineSteep(uint32_t col, OutputMatrix& out) { alphaGrad<1, 4>(out.template ref<0, scale - 1>(), col); alphaGrad<1, 4>(out.template ref<2, scale - 2>(), col); alphaGrad<3, 4>(out.template ref<1, scale - 1>(), col); alphaGrad<3, 4>(out.template ref<3, scale - 2>(), col); out.template ref<2, scale - 1>() = col; out.template ref<3, scale - 1>() = col; } template static void blendLineSteepAndShallow(uint32_t col, OutputMatrix& out) { alphaGrad<3, 4>(out.template ref<3, 1>(), col); alphaGrad<3, 4>(out.template ref<1, 3>(), col); alphaGrad<1, 4>(out.template ref<3, 0>(), col); alphaGrad<1, 4>(out.template ref<0, 3>(), col); alphaGrad<1, 3>(out.template ref<2, 2>(), col); //[!] fixes 1/4 used in xBR out.template ref<3, 3>() = col; out.template ref<3, 2>() = col; out.template ref<2, 3>() = col; } template static void blendLineDiagonal(uint32_t col, OutputMatrix& out) { alphaGrad<1, 2>(out.template ref(), col); alphaGrad<1, 2>(out.template ref(), col); out.template ref() = col; } template static void blendCorner(uint32_t col, OutputMatrix& out) { //model a round corner alphaGrad<68, 100>(out.template ref<3, 3>(), col); //exact: 0.6848532563 alphaGrad< 9, 100>(out.template ref<3, 2>(), col); //0.08677704501 alphaGrad< 9, 100>(out.template ref<2, 3>(), col); //0.08677704501 } }; template struct Scaler5x : public ColorGradient { static const int scale = 5; template //bring template function into scope for GCC static void alphaGrad(uint32_t& pixBack, uint32_t pixFront) { ColorGradient::template alphaGrad(pixBack, pixFront); } template static void blendLineShallow(uint32_t col, OutputMatrix& out) { alphaGrad<1, 4>(out.template ref(), col); alphaGrad<1, 4>(out.template ref(), col); alphaGrad<1, 4>(out.template ref(), col); alphaGrad<3, 4>(out.template ref(), col); alphaGrad<3, 4>(out.template ref(), col); out.template ref() = col; out.template ref() = col; out.template ref() = col; out.template ref() = col; } template static void blendLineSteep(uint32_t col, OutputMatrix& out) { alphaGrad<1, 4>(out.template ref<0, scale - 1>(), col); alphaGrad<1, 4>(out.template ref<2, scale - 2>(), col); alphaGrad<1, 4>(out.template ref<4, scale - 3>(), col); alphaGrad<3, 4>(out.template ref<1, scale - 1>(), col); alphaGrad<3, 4>(out.template ref<3, scale - 2>(), col); out.template ref<2, scale - 1>() = col; out.template ref<3, scale - 1>() = col; out.template ref<4, scale - 1>() = col; out.template ref<4, scale - 2>() = col; } template static void blendLineSteepAndShallow(uint32_t col, OutputMatrix& out) { alphaGrad<1, 4>(out.template ref<0, scale - 1>(), col); alphaGrad<1, 4>(out.template ref<2, scale - 2>(), col); alphaGrad<3, 4>(out.template ref<1, scale - 1>(), col); alphaGrad<1, 4>(out.template ref(), col); alphaGrad<1, 4>(out.template ref(), col); alphaGrad<3, 4>(out.template ref(), col); alphaGrad<2, 3>(out.template ref<3, 3>(), col); out.template ref<2, scale - 1>() = col; out.template ref<3, scale - 1>() = col; out.template ref<4, scale - 1>() = col; out.template ref() = col; out.template ref() = col; } template static void blendLineDiagonal(uint32_t col, OutputMatrix& out) { alphaGrad<1, 8>(out.template ref(), col); //conflict with other rotations for this odd scale alphaGrad<1, 8>(out.template ref(), col); alphaGrad<1, 8>(out.template ref(), col); // alphaGrad<7, 8>(out.template ref<4, 3>(), col); alphaGrad<7, 8>(out.template ref<3, 4>(), col); out.template ref<4, 4>() = col; } template static void blendCorner(uint32_t col, OutputMatrix& out) { //model a round corner alphaGrad<86, 100>(out.template ref<4, 4>(), col); //exact: 0.8631434088 alphaGrad<23, 100>(out.template ref<4, 3>(), col); //0.2306749731 alphaGrad<23, 100>(out.template ref<3, 4>(), col); //0.2306749731 //alphaGrad<1, 64>(out.template ref<4, 2>(), col); //0.01676812367 -> negligible + avoid conflicts with other rotations for this odd scale //alphaGrad<1, 64>(out.template ref<2, 4>(), col); //0.01676812367 } }; template struct Scaler6x : public ColorGradient { static const int scale = 6; template //bring template function into scope for GCC static void alphaGrad(uint32_t& pixBack, uint32_t pixFront) { ColorGradient::template alphaGrad(pixBack, pixFront); } template static void blendLineShallow(uint32_t col, OutputMatrix& out) { alphaGrad<1, 4>(out.template ref(), col); alphaGrad<1, 4>(out.template ref(), col); alphaGrad<1, 4>(out.template ref(), col); alphaGrad<3, 4>(out.template ref(), col); alphaGrad<3, 4>(out.template ref(), col); alphaGrad<3, 4>(out.template ref(), col); out.template ref() = col; out.template ref() = col; out.template ref() = col; out.template ref() = col; out.template ref() = col; out.template ref() = col; } template static void blendLineSteep(uint32_t col, OutputMatrix& out) { alphaGrad<1, 4>(out.template ref<0, scale - 1>(), col); alphaGrad<1, 4>(out.template ref<2, scale - 2>(), col); alphaGrad<1, 4>(out.template ref<4, scale - 3>(), col); alphaGrad<3, 4>(out.template ref<1, scale - 1>(), col); alphaGrad<3, 4>(out.template ref<3, scale - 2>(), col); alphaGrad<3, 4>(out.template ref<5, scale - 3>(), col); out.template ref<2, scale - 1>() = col; out.template ref<3, scale - 1>() = col; out.template ref<4, scale - 1>() = col; out.template ref<5, scale - 1>() = col; out.template ref<4, scale - 2>() = col; out.template ref<5, scale - 2>() = col; } template static void blendLineSteepAndShallow(uint32_t col, OutputMatrix& out) { alphaGrad<1, 4>(out.template ref<0, scale - 1>(), col); alphaGrad<1, 4>(out.template ref<2, scale - 2>(), col); alphaGrad<3, 4>(out.template ref<1, scale - 1>(), col); alphaGrad<3, 4>(out.template ref<3, scale - 2>(), col); alphaGrad<1, 4>(out.template ref(), col); alphaGrad<1, 4>(out.template ref(), col); alphaGrad<3, 4>(out.template ref(), col); alphaGrad<3, 4>(out.template ref(), col); out.template ref<2, scale - 1>() = col; out.template ref<3, scale - 1>() = col; out.template ref<4, scale - 1>() = col; out.template ref<5, scale - 1>() = col; out.template ref<4, scale - 2>() = col; out.template ref<5, scale - 2>() = col; out.template ref() = col; out.template ref() = col; } template static void blendLineDiagonal(uint32_t col, OutputMatrix& out) { alphaGrad<1, 2>(out.template ref(), col); alphaGrad<1, 2>(out.template ref(), col); alphaGrad<1, 2>(out.template ref(), col); out.template ref() = col; out.template ref() = col; out.template ref() = col; } template static void blendCorner(uint32_t col, OutputMatrix& out) { //model a round corner alphaGrad<97, 100>(out.template ref<5, 5>(), col); //exact: 0.9711013910 alphaGrad<42, 100>(out.template ref<4, 5>(), col); //0.4236372243 alphaGrad<42, 100>(out.template ref<5, 4>(), col); //0.4236372243 alphaGrad< 6, 100>(out.template ref<5, 3>(), col); //0.05652034508 alphaGrad< 6, 100>(out.template ref<3, 5>(), col); //0.05652034508 } }; //------------------------------------------------------------------------------------ struct ColorDistanceRGB { static double dist(uint32_t pix1, uint32_t pix2, double luminanceWeight) { return distYCbCrBuffered(pix1, pix2); //if (pix1 == pix2) //about 4% perf boost // return 0; //return distYCbCr(pix1, pix2, luminanceWeight); } }; struct ColorDistanceARGB { static double dist(uint32_t pix1, uint32_t pix2, double luminanceWeight) { const double a1 = getAlpha(pix1) / 255.0 ; const double a2 = getAlpha(pix2) / 255.0 ; /* Requirements for a color distance handling alpha channel: with a1, a2 in [0, 1] 1. if a1 = a2, distance should be: a1 * distYCbCr() 2. if a1 = 0, distance should be: a2 * distYCbCr(black, white) = a2 * 255 3. if a1 = 1, ??? maybe: 255 * (1 - a2) + a2 * distYCbCr() */ //return std::min(a1, a2) * distYCbCrBuffered(pix1, pix2) + 255 * abs(a1 - a2); //=> following code is 15% faster: const double d = distYCbCrBuffered(pix1, pix2); if (a1 < a2) return a1 * d + 255 * (a2 - a1); else return a2 * d + 255 * (a1 - a2); //alternative? return std::sqrt(a1 * a2 * square(distYCbCrBuffered(pix1, pix2)) + square(255 * (a1 - a2))); } }; struct ColorDistanceUnbufferedARGB { static double dist(uint32_t pix1, uint32_t pix2, double luminanceWeight) { const double a1 = getAlpha(pix1) / 255.0 ; const double a2 = getAlpha(pix2) / 255.0 ; const double d = distYCbCr(pix1, pix2, luminanceWeight); if (a1 < a2) return a1 * d + 255 * (a2 - a1); else return a2 * d + 255 * (a1 - a2); } }; struct ColorGradientRGB { template static void alphaGrad(uint32_t& pixBack, uint32_t pixFront) { pixBack = gradientRGB(pixFront, pixBack); } }; struct ColorGradientARGB { template static void alphaGrad(uint32_t& pixBack, uint32_t pixFront) { pixBack = gradientARGB(pixFront, pixBack); } }; } void xbrz::scale(size_t factor, const uint32_t* src, uint32_t* trg, int srcWidth, int srcHeight, ColorFormat colFmt, const xbrz::ScalerCfg& cfg, int yFirst, int yLast) { if (factor == 1) { std::copy(src + yFirst * srcWidth, src + yLast * srcWidth, trg); return; } static_assert(SCALE_FACTOR_MAX == 6, ""); switch (colFmt) { case ColorFormat::RGB: switch (factor) { case 2: return scaleImage, ColorDistanceRGB>(src, trg, srcWidth, srcHeight, cfg, yFirst, yLast); case 3: return scaleImage, ColorDistanceRGB>(src, trg, srcWidth, srcHeight, cfg, yFirst, yLast); case 4: return scaleImage, ColorDistanceRGB>(src, trg, srcWidth, srcHeight, cfg, yFirst, yLast); case 5: return scaleImage, ColorDistanceRGB>(src, trg, srcWidth, srcHeight, cfg, yFirst, yLast); case 6: return scaleImage, ColorDistanceRGB>(src, trg, srcWidth, srcHeight, cfg, yFirst, yLast); } break; case ColorFormat::ARGB: switch (factor) { case 2: return scaleImage, ColorDistanceARGB>(src, trg, srcWidth, srcHeight, cfg, yFirst, yLast); case 3: return scaleImage, ColorDistanceARGB>(src, trg, srcWidth, srcHeight, cfg, yFirst, yLast); case 4: return scaleImage, ColorDistanceARGB>(src, trg, srcWidth, srcHeight, cfg, yFirst, yLast); case 5: return scaleImage, ColorDistanceARGB>(src, trg, srcWidth, srcHeight, cfg, yFirst, yLast); case 6: return scaleImage, ColorDistanceARGB>(src, trg, srcWidth, srcHeight, cfg, yFirst, yLast); } break; case ColorFormat::ARGB_UNBUFFERED: switch (factor) { case 2: return scaleImage, ColorDistanceUnbufferedARGB>(src, trg, srcWidth, srcHeight, cfg, yFirst, yLast); case 3: return scaleImage, ColorDistanceUnbufferedARGB>(src, trg, srcWidth, srcHeight, cfg, yFirst, yLast); case 4: return scaleImage, ColorDistanceUnbufferedARGB>(src, trg, srcWidth, srcHeight, cfg, yFirst, yLast); case 5: return scaleImage, ColorDistanceUnbufferedARGB>(src, trg, srcWidth, srcHeight, cfg, yFirst, yLast); case 6: return scaleImage, ColorDistanceUnbufferedARGB>(src, trg, srcWidth, srcHeight, cfg, yFirst, yLast); } break; } assert(false); } bool xbrz::equalColorTest(uint32_t col1, uint32_t col2, ColorFormat colFmt, double luminanceWeight, double equalColorTolerance) { switch (colFmt) { case ColorFormat::RGB: return ColorDistanceRGB::dist(col1, col2, luminanceWeight) < equalColorTolerance; case ColorFormat::ARGB: return ColorDistanceARGB::dist(col1, col2, luminanceWeight) < equalColorTolerance; case ColorFormat::ARGB_UNBUFFERED: return ColorDistanceUnbufferedARGB::dist(col1, col2, luminanceWeight) < equalColorTolerance; } assert(false); return false; } void xbrz::bilinearScale(const uint32_t* src, int srcWidth, int srcHeight, /**/ uint32_t* trg, int trgWidth, int trgHeight) { bilinearScale(src, srcWidth, srcHeight, srcWidth * sizeof(uint32_t), trg, trgWidth, trgHeight, trgWidth * sizeof(uint32_t), 0, trgHeight, [](uint32_t pix) { return pix; }); } void xbrz::nearestNeighborScale(const uint32_t* src, int srcWidth, int srcHeight, /**/ uint32_t* trg, int trgWidth, int trgHeight) { nearestNeighborScale(src, srcWidth, srcHeight, srcWidth * sizeof(uint32_t), trg, trgWidth, trgHeight, trgWidth * sizeof(uint32_t), 0, trgHeight, [](uint32_t pix) { return pix; }); } #if 0 //#include void bilinearScaleCpu(const uint32_t* src, int srcWidth, int srcHeight, /**/ uint32_t* trg, int trgWidth, int trgHeight) { const int TASK_GRANULARITY = 16; concurrency::task_group tg; for (int i = 0; i < trgHeight; i += TASK_GRANULARITY) tg.run([=] { const int iLast = std::min(i + TASK_GRANULARITY, trgHeight); xbrz::bilinearScale(src, srcWidth, srcHeight, srcWidth * sizeof(uint32_t), trg, trgWidth, trgHeight, trgWidth * sizeof(uint32_t), i, iLast, [](uint32_t pix) { return pix; }); }); tg.wait(); } //Perf: AMP vs CPU: merely ~10% shorter runtime (scaling 1280x800 -> 1920x1080) //#include void bilinearScaleAmp(const uint32_t* src, int srcWidth, int srcHeight, //throw concurrency::runtime_exception /**/ uint32_t* trg, int trgWidth, int trgHeight) { //C++ AMP reference: https://msdn.microsoft.com/en-us/library/hh289390.aspx //introduction to C++ AMP: https://msdn.microsoft.com/en-us/magazine/hh882446.aspx using namespace concurrency; //TODO: pitch if (srcHeight <= 0 || srcWidth <= 0) return; const float scaleX = static_cast(trgWidth ) / srcWidth; const float scaleY = static_cast(trgHeight) / srcHeight; array_view srcView(srcHeight, srcWidth, src); array_view< uint32_t, 2> trgView(trgHeight, trgWidth, trg); trgView.discard_data(); parallel_for_each(trgView.extent, [=](index<2> idx) restrict(amp) //throw ? { const int y = idx[0]; const int x = idx[1]; //Perf notes: // -> float-based calculation is (almost) 2x as fas as double! // -> no noticeable improvement via tiling: https://msdn.microsoft.com/en-us/magazine/hh882447.aspx // -> no noticeable improvement with restrict(amp,cpu) // -> iterating over y-axis only is significantly slower! // -> pre-calculating x,y-dependent variables in a buffer + array_view<> is ~ 20 % slower! const int y1 = srcHeight * y / trgHeight; int y2 = y1 + 1; if (y2 == srcHeight) --y2; const float yy1 = y / scaleY - y1; const float y2y = 1 - yy1; //------------------------------------- const int x1 = srcWidth * x / trgWidth; int x2 = x1 + 1; if (x2 == srcWidth) --x2; const float xx1 = x / scaleX - x1; const float x2x = 1 - xx1; //------------------------------------- const float x2xy2y = x2x * y2y; const float xx1y2y = xx1 * y2y; const float x2xyy1 = x2x * yy1; const float xx1yy1 = xx1 * yy1; auto interpolate = [=](int offset) { /* https://en.wikipedia.org/wiki/Bilinear_interpolation (c11(x2 - x) + c21(x - x1)) * (y2 - y ) + (c12(x2 - x) + c22(x - x1)) * (y - y1) */ const auto c11 = (srcView(y1, x1) >> (8 * offset)) & 0xff; const auto c21 = (srcView(y1, x2) >> (8 * offset)) & 0xff; const auto c12 = (srcView(y2, x1) >> (8 * offset)) & 0xff; const auto c22 = (srcView(y2, x2) >> (8 * offset)) & 0xff; return c11 * x2xy2y + c21 * xx1y2y + c12 * x2xyy1 + c22 * xx1yy1; }; const float bi = interpolate(0); const float gi = interpolate(1); const float ri = interpolate(2); const float ai = interpolate(3); const auto b = static_cast(bi + 0.5f); const auto g = static_cast(gi + 0.5f); const auto r = static_cast(ri + 0.5f); const auto a = static_cast(ai + 0.5f); trgView(y, x) = (a << 24) | (r << 16) | (g << 8) | b; }); trgView.synchronize(); //throw ? } #endif