// **************************************************************************** // * This file is part of the xBRZ project. It is distributed under * // * GNU General Public License: https://www.gnu.org/licenses/gpl-3.0 * // * Copyright (C) Zenju (zenju AT gmx DOT de) - All Rights Reserved * // * * // * Additionally and as a special exception, the author gives permission * // * to link the code of this program with the following libraries * // * (or with modified versions that use the same licenses), and distribute * // * linked combinations including the two: MAME, FreeFileSync, Snes9x, ePSXe * // * * // * You must obey the GNU General Public License in all respects for all of * // * the code used other than MAME, FreeFileSync, Snes9x, ePSXe. * // * If you modify this file, you may extend this exception to your version * // * of the file, but you are not obligated to do so. If you do not wish to * // * do so, delete this exception statement from your version. * // **************************************************************************** #include "xbrz.h" #include #include #include //std::sqrt #include #include "xbrz_tools.h" using namespace xbrz; namespace { //blend front color with opacity M / N over opaque background: https://en.wikipedia.org/wiki/Alpha_compositing //TODO!? gamma correction: https://en.wikipedia.org/wiki/Alpha_compositing#Gamma_correction template inline uint32_t gradientRGB(uint32_t pixFront, uint32_t pixBack) { static_assert(0 < M && M < N && N <= 1000); auto calcColor = [](unsigned char colFront, unsigned char colBack) { return static_cast(uintDivRound(colFront * M + colBack * (N - M), N)); }; return makePixel(calcColor(getRed (pixFront), getRed (pixBack)), calcColor(getGreen(pixFront), getGreen(pixBack)), calcColor(getBlue (pixFront), getBlue (pixBack))); } //find intermediate color between two colors with alpha channels (=> NO alpha blending!!!) //TODO!? gamma correction: https://en.wikipedia.org/wiki/Alpha_compositing#Gamma_correction template inline uint32_t gradientARGB(uint32_t pixFront, uint32_t pixBack) { static_assert(0 < M && M < N && N <= 1000); const unsigned int weightFront = getAlpha(pixFront) * M; const unsigned int weightBack = getAlpha(pixBack) * (N - M); const unsigned int weightSum = weightFront + weightBack; if (weightSum == 0) return 0; auto calcColor = [=](unsigned char colFront, unsigned char colBack) { return static_cast(uintDivRound(colFront * weightFront + colBack * weightBack, weightSum)); }; return makePixel(static_cast(uintDivRound(weightSum, N)), calcColor(getRed (pixFront), getRed (pixBack)), calcColor(getGreen(pixFront), getGreen(pixBack)), calcColor(getBlue (pixFront), getBlue (pixBack))); } //inline //double fastSqrt(double n) //{ // __asm //speeds up xBRZ by about 9% compared to std::sqrt which internally uses the same assembler instructions but adds some "fluff" // { // fld n // fsqrt // } //} // #if defined __GNUC__ #define FORCE_INLINE __attribute__((always_inline)) inline #else #define FORCE_INLINE inline #endif enum RotationDegree //clock-wise { ROT_0, ROT_90, ROT_180, ROT_270 }; //calculate input matrix coordinates after rotation at compile time template struct MatrixRotation; template struct MatrixRotation { static const size_t I_old = I; static const size_t J_old = J; }; template //(i, j) = (row, col) indices, N = size of (square) matrix struct MatrixRotation { static const size_t I_old = N - 1 - MatrixRotation(rotDeg - 1), I, J, N>::J_old; //old coordinates before rotation! static const size_t J_old = MatrixRotation(rotDeg - 1), I, J, N>::I_old; // }; template class OutputMatrix { public: OutputMatrix(uint32_t* out, int outWidth) : //access matrix area, top-left at position "out" for image with given width out_(out), outWidth_(outWidth) {} template uint32_t& ref() const { static const size_t I_old = MatrixRotation::I_old; static const size_t J_old = MatrixRotation::J_old; return *(out_ + J_old + I_old * outWidth_); } private: uint32_t* out_; const int outWidth_; }; template inline T square(T value) { return value * value; } #if 0 inline double distRGB(uint32_t pix1, uint32_t pix2) { const double r_diff = static_cast(getRed (pix1)) - getRed (pix2); const double g_diff = static_cast(getGreen(pix1)) - getGreen(pix2); const double b_diff = static_cast(getBlue (pix1)) - getBlue (pix2); //euklidean RGB distance return std::sqrt(square(r_diff) + square(g_diff) + square(b_diff)); } #endif inline double distYCbCr(uint32_t pix1, uint32_t pix2, double /*testAttribute*/) { //https://en.wikipedia.org/wiki/YCbCr#ITU-R_BT.601_conversion //Y'CbCr conversion is a matrix multiplication => take advantage of linearity by subtracting first! //NOTE: input is gamma-encoded RGB! => what does this mean for the output distance!?? const int r_diff = static_cast(getRed (pix1)) - getRed (pix2); //defer division by 255 to after matrix multiplication const int g_diff = static_cast(getGreen(pix1)) - getGreen(pix2); // const int b_diff = static_cast(getBlue (pix1)) - getBlue (pix2); //substraction for int is noticeable faster than for double! //const double k_b = 0.0722; //ITU-R BT.709 conversion //const double k_r = 0.2126; // const double k_b = 0.0593; //ITU-R BT.2020 conversion const double k_r = 0.2627; // const double k_g = 1 - k_b - k_r; const double scale_b = 0.5 / (1 - k_b); const double scale_r = 0.5 / (1 - k_r); const double y = k_r * r_diff + k_g * g_diff + k_b * b_diff; //[!], analog YCbCr! const double c_b = scale_b * (b_diff - y); const double c_r = scale_r * (r_diff - y); //we skip division by 255 to have similar range like other distance functions return std::sqrt(square(y) + square(c_b) + square(c_r)); } inline double distYCbCrBuffered(uint32_t pix1, uint32_t pix2, double /*testAttribute*/) { //30% perf boost compared to plain distYCbCr()! //consumes 64 MB memory; using double is only 2% faster, but takes 128 MB static const std::vector diffToDist = [] { std::vector tmp; for (uint32_t i = 0; i < 256 * 256 * 256; ++i) //startup time: 114 ms on Intel Core i5 (four cores) { const int r_diff = static_cast(getByte<2>(i)) * 2; const int g_diff = static_cast(getByte<1>(i)) * 2; const int b_diff = static_cast(getByte<0>(i)) * 2; const double k_b = 0.0593; //ITU-R BT.2020 conversion const double k_r = 0.2627; // const double k_g = 1 - k_b - k_r; const double scale_b = 0.5 / (1 - k_b); const double scale_r = 0.5 / (1 - k_r); const double y = k_r * r_diff + k_g * g_diff + k_b * b_diff; //[!], analog YCbCr! const double c_b = scale_b * (b_diff - y); const double c_r = scale_r * (r_diff - y); tmp.push_back(static_cast(std::sqrt(square(y) + square(c_b) + square(c_r)))); } return tmp; }(); //if (pix1 == pix2) -> 8% perf degradation! // return 0; //if (pix1 < pix2) // std::swap(pix1, pix2); -> 30% perf degradation!!! const int r_diff = static_cast(getRed (pix1)) - getRed (pix2); const int g_diff = static_cast(getGreen(pix1)) - getGreen(pix2); const int b_diff = static_cast(getBlue (pix1)) - getBlue (pix2); const size_t index = (static_cast(r_diff / 2) << 16) | //slightly reduce precision (division by 2) to squeeze value into single byte (static_cast(g_diff / 2) << 8) | (static_cast(b_diff / 2)); #if 0 //attention: the following calculation creates an asymmetric color distance!!! (e.g. r_diff=46 will be unpacked as 45, but r_diff=-46 unpacks to -47 const size_t index = (((r_diff + 0xFF) / 2) << 16) | //slightly reduce precision (division by 2) to squeeze value into single byte (((g_diff + 0xFF) / 2) << 8) | (( b_diff + 0xFF) / 2); #endif return diffToDist[index]; } enum BlendType { BLEND_NONE = 0, BLEND_NORMAL, //a normal indication to blend BLEND_DOMINANT, //a strong indication to blend //attention: BlendType must fit into the value range of 2 bit!!! }; struct BlendResult { BlendType blend_e, blend_f, blend_h, blend_i; }; struct Kernel_3x3 { uint32_t a, b, c, d, e, f, g, h, i; }; struct Kernel_4x4 : Kernel_3x3 { uint32_t j, k, l, m, n, o, p; }; /* input kernel for preprocessing step: ----------------- | A | B | C | P | |---|---|---|---| | D | E | F | O | evaluate the four corners between E, F, H, I |---|---|---|---| input pixel is at position E | G | H | I | N | |---|---|---|---| | J | K | L | M | ----------------- */ template FORCE_INLINE //detect blend direction BlendResult preProcessCorners(const Kernel_4x4& ker, const xbrz::ScalerCfg& cfg) //result: E, F, H, I corners of "GradientType" { BlendResult result = {}; if ((ker.e == ker.f && ker.h == ker.i) || (ker.e == ker.h && ker.f == ker.i)) return result; auto dist = [&](uint32_t pix1, uint32_t pix2) { return ColorDistance::dist(pix1, pix2, cfg.testAttribute); }; const double hf = dist(ker.g, ker.e) + dist(ker.e, ker.c) + dist(ker.k, ker.i) + dist(ker.i, ker.o) + cfg.centerDirectionBias * dist(ker.h, ker.f); const double ei = dist(ker.d, ker.h) + dist(ker.h, ker.l) + dist(ker.b, ker.f) + dist(ker.f, ker.n) + cfg.centerDirectionBias * dist(ker.e, ker.i); if (hf < ei) //test sample: 70% of values max(hf, ei) / min(hf, ei) are between 1.1 and 3.7 with median being 1.8 { const bool dominantGradient = cfg.dominantDirectionThreshold * hf < ei; if (ker.e != ker.f && ker.e != ker.h) result.blend_e = dominantGradient ? BLEND_DOMINANT : BLEND_NORMAL; if (ker.i != ker.h && ker.i != ker.f) result.blend_i = dominantGradient ? BLEND_DOMINANT : BLEND_NORMAL; } else if (ei < hf) { const bool dominantGradient = cfg.dominantDirectionThreshold * ei < hf; if (ker.h != ker.e && ker.h != ker.i) result.blend_h = dominantGradient ? BLEND_DOMINANT : BLEND_NORMAL; if (ker.f != ker.e && ker.f != ker.i) result.blend_f = dominantGradient ? BLEND_DOMINANT : BLEND_NORMAL; } return result; } #define DEF_GETTER(x) template uint32_t inline get_##x(const Kernel_3x3& ker) { return ker.x; } //we cannot and NEED NOT write "ker.##x" since ## concatenates preprocessor tokens but "." is not a token DEF_GETTER(a) DEF_GETTER(b) DEF_GETTER(c) DEF_GETTER(d) DEF_GETTER(e) DEF_GETTER(f) DEF_GETTER(g) DEF_GETTER(h) DEF_GETTER(i) #undef DEF_GETTER #define DEF_GETTER(x, y) template <> inline uint32_t get_##x(const Kernel_3x3& ker) { return ker.y; } DEF_GETTER(a, g) DEF_GETTER(b, d) DEF_GETTER(c, a) DEF_GETTER(d, h) DEF_GETTER(e, e) DEF_GETTER(f, b) DEF_GETTER(g, i) DEF_GETTER(h, f) DEF_GETTER(i, c) #undef DEF_GETTER #define DEF_GETTER(x, y) template <> inline uint32_t get_##x(const Kernel_3x3& ker) { return ker.y; } DEF_GETTER(a, i) DEF_GETTER(b, h) DEF_GETTER(c, g) DEF_GETTER(d, f) DEF_GETTER(e, e) DEF_GETTER(f, d) DEF_GETTER(g, c) DEF_GETTER(h, b) DEF_GETTER(i, a) #undef DEF_GETTER #define DEF_GETTER(x, y) template <> inline uint32_t get_##x(const Kernel_3x3& ker) { return ker.y; } DEF_GETTER(a, c) DEF_GETTER(b, f) DEF_GETTER(c, i) DEF_GETTER(d, b) DEF_GETTER(e, e) DEF_GETTER(f, h) DEF_GETTER(g, a) DEF_GETTER(h, d) DEF_GETTER(i, g) #undef DEF_GETTER //compress four blend types into a single byte //inline BlendType getTopL (unsigned char b) { return static_cast(0x3 & b); } inline BlendType getTopR (unsigned char b) { return static_cast(0x3 & (b >> 2)); } inline BlendType getBottomR(unsigned char b) { return static_cast(0x3 & (b >> 4)); } inline BlendType getBottomL(unsigned char b) { return static_cast(0x3 & (b >> 6)); } inline void clearAddTopL(unsigned char& b, BlendType bt) { b = static_cast(bt); } inline void addTopR (unsigned char& b, BlendType bt) { b |= (bt << 2); } //buffer is assumed to be initialized before preprocessing! inline void addBottomR (unsigned char& b, BlendType bt) { b |= (bt << 4); } //e.g. via clearAddTopL() inline void addBottomL (unsigned char& b, BlendType bt) { b |= (bt << 6); } // inline bool blendingNeeded(unsigned char b) { static_assert(BLEND_NONE == 0); return b != 0; } template inline unsigned char rotateBlendInfo(unsigned char b) { return b; } template <> inline unsigned char rotateBlendInfo(unsigned char b) { return ((b << 2) | (b >> 6)) & 0xff; } template <> inline unsigned char rotateBlendInfo(unsigned char b) { return ((b << 4) | (b >> 4)) & 0xff; } template <> inline unsigned char rotateBlendInfo(unsigned char b) { return ((b << 6) | (b >> 2)) & 0xff; } /* input kernel area naming convention: ------------- | A | B | C | |---|---|---| | D | E | F | input pixel is at position E |---|---|---| | G | H | I | ------------- */ template FORCE_INLINE //perf: quite worth it! void blendPixel(const Kernel_3x3& ker, uint32_t* target, int trgWidth, unsigned char blendInfo, //result of preprocessing all four corners of pixel "E" const xbrz::ScalerCfg& cfg) { //#define a get_a(ker) #define b get_b(ker) #define c get_c(ker) #define d get_d(ker) #define e get_e(ker) #define f get_f(ker) #define g get_g(ker) #define h get_h(ker) #define i get_i(ker) const unsigned char blend = rotateBlendInfo(blendInfo); if (getBottomR(blend) >= BLEND_NORMAL) { auto eq = [&](uint32_t pix1, uint32_t pix2) { return ColorDistance::dist(pix1, pix2, cfg.testAttribute) < cfg.equalColorTolerance; }; auto dist = [&](uint32_t pix1, uint32_t pix2) { return ColorDistance::dist(pix1, pix2, cfg.testAttribute); }; const bool doLineBlend = [&]() -> bool { if (getBottomR(blend) >= BLEND_DOMINANT) return true; //make sure there is no second blending in an adjacent rotation for this pixel: handles insular pixels, mario eyes if (getTopR(blend) != BLEND_NONE && !eq(e, g)) //but support double-blending for 90° corners return false; if (getBottomL(blend) != BLEND_NONE && !eq(e, c)) return false; //no full blending for L-shapes; blend corner only (handles "mario mushroom eyes") if (!eq(e, i) && eq(g, h) && eq(h, i) && eq(i, f) && eq(f, c)) return false; return true; }(); const uint32_t px = dist(e, f) <= dist(e, h) ? f : h; //choose most similar color OutputMatrix out(target, trgWidth); if (doLineBlend) { const double fg = dist(f, g); //test sample: 70% of values max(fg, hc) / min(fg, hc) are between 1.1 and 3.7 with median being 1.9 const double hc = dist(h, c); // const bool haveShallowLine = cfg.steepDirectionThreshold * fg <= hc && e != g && d != g; const bool haveSteepLine = cfg.steepDirectionThreshold * hc <= fg && e != c && b != c; if (haveShallowLine) { if (haveSteepLine) Scaler::blendLineSteepAndShallow(px, out); else Scaler::blendLineShallow(px, out); } else { if (haveSteepLine) Scaler::blendLineSteep(px, out); else Scaler::blendLineDiagonal(px, out); } } else Scaler::blendCorner(px, out); } //#undef a #undef b #undef c #undef d #undef e #undef f #undef g #undef h #undef i } class OobReaderTransparent { public: OobReaderTransparent(const uint32_t* src, int srcWidth, int srcHeight, int y) : s_m1(0 <= y - 1 && y - 1 < srcHeight ? src + srcWidth * (y - 1) : nullptr), s_0 (0 <= y && y < srcHeight ? src + srcWidth * y : nullptr), s_p1(0 <= y + 1 && y + 1 < srcHeight ? src + srcWidth * (y + 1) : nullptr), s_p2(0 <= y + 2 && y + 2 < srcHeight ? src + srcWidth * (y + 2) : nullptr), srcWidth_(srcWidth) {} void readPonm(Kernel_4x4& ker, int x) const //(x, y) is at kernel position E { [[likely]] if (const int x_p2 = x + 2; 0 <= x_p2 && x_p2 < srcWidth_) { ker.p = s_m1 ? s_m1[x_p2] : 0; ker.o = s_0 ? s_0 [x_p2] : 0; ker.n = s_p1 ? s_p1[x_p2] : 0; ker.m = s_p2 ? s_p2[x_p2] : 0; } else { ker.p = 0; ker.o = 0; ker.n = 0; ker.m = 0; } } private: const uint32_t* const s_m1; const uint32_t* const s_0; const uint32_t* const s_p1; const uint32_t* const s_p2; const int srcWidth_; }; class OobReaderDuplicate { public: OobReaderDuplicate(const uint32_t* src, int srcWidth, int srcHeight, int y) : s_m1(src + srcWidth * std::clamp(y - 1, 0, srcHeight - 1)), s_0 (src + srcWidth * std::clamp(y, 0, srcHeight - 1)), s_p1(src + srcWidth * std::clamp(y + 1, 0, srcHeight - 1)), s_p2(src + srcWidth * std::clamp(y + 2, 0, srcHeight - 1)), srcWidth_(srcWidth) {} void readPonm(Kernel_4x4& ker, int x) const //(x, y) is at kernel position E { const int x_p2 = std::clamp(x + 2, 0, srcWidth_ - 1); ker.p = s_m1[x_p2]; ker.o = s_0 [x_p2]; ker.n = s_p1[x_p2]; ker.m = s_p2[x_p2]; } private: const uint32_t* const s_m1; const uint32_t* const s_0; const uint32_t* const s_p1; const uint32_t* const s_p2; const int srcWidth_; }; inline void fillBlock(uint32_t* trg, int trgWidth, uint32_t col, int blockSize) { for (int y = 0; y < blockSize; ++y, trg += trgWidth) // std::fill(trg, trg + blockSize, col); for (int x = 0; x < blockSize; ++x) trg[x] = col; } template //scaler policy: see "Scaler2x" reference implementation void scaleImage(const uint32_t* src, uint32_t* trg, int srcWidth, int srcHeight, const xbrz::ScalerCfg& cfg, int yFirst, int yLast) { yFirst = std::max(yFirst, 0); yLast = std::min(yLast, srcHeight); if (yFirst >= yLast || srcWidth <= 0) return; const int trgWidth = srcWidth * Scaler::scale; //(ab)use space of "sizeof(uint32_t) * srcWidth * Scaler::scale" at the end of the image as temporary //buffer for "on the fly preprocessing" without risk of accidental overwriting before accessing unsigned char* const preProcBuf = reinterpret_cast(trg + yLast * Scaler::scale * trgWidth) - srcWidth; //initialize preprocessing buffer for first row of current stripe: detect upper left and right corner blending //this cannot be optimized for adjacent processing stripes; we must not allow for a memory race condition! { const OobReader oobReader(src, srcWidth, srcHeight, yFirst - 1); //initialize at position x = -1 Kernel_4x4 ker4 = {}; oobReader.readPonm(ker4, -4); //hack: read a, d, g, j at x = -1 ker4.a = ker4.p; ker4.d = ker4.o; ker4.g = ker4.n; ker4.j = ker4.m; oobReader.readPonm(ker4, -3); ker4.b = ker4.p; ker4.e = ker4.o; ker4.h = ker4.n; ker4.k = ker4.m; oobReader.readPonm(ker4, -2); ker4.c = ker4.p; ker4.f = ker4.o; ker4.i = ker4.n; ker4.l = ker4.m; oobReader.readPonm(ker4, -1); { const BlendResult res = preProcessCorners(ker4, cfg); clearAddTopL(preProcBuf[0], res.blend_i); //set 1st known corner for (0, yFirst) } for (int x = 0; x < srcWidth; ++x) { ker4.a = ker4.b; //shift previous kernel to the left ker4.d = ker4.e; // ----------------- ker4.g = ker4.h; // | A | B | C | P | ker4.j = ker4.k; // |---|---|---|---| /**/ // | D | E | F | O | (x, yFirst - 1) is at position E ker4.b = ker4.c; // |---|---|---|---| ker4.e = ker4.f; // | G | H | I | N | ker4.h = ker4.i; // |---|---|---|---| ker4.k = ker4.l; // | J | K | L | M | /**/ // ----------------- ker4.c = ker4.p; ker4.f = ker4.o; ker4.i = ker4.n; ker4.l = ker4.m; oobReader.readPonm(ker4, x); /* preprocessing blend result: --------- | E | F | evaluate corner between E, F, H, I |---+---| current input pixel is at position E | H | I | --------- */ const BlendResult res = preProcessCorners(ker4, cfg); addTopR(preProcBuf[x], res.blend_h); //set 2nd known corner for (x, yFirst) if (x + 1 < srcWidth) clearAddTopL(preProcBuf[x + 1], res.blend_i); //set 1st known corner for (x + 1, yFirst) } } //------------------------------------------------------------------------------------ for (int y = yFirst; y < yLast; ++y) { uint32_t* out = trg + Scaler::scale * y * trgWidth; //consider MT "striped" access const OobReader oobReader(src, srcWidth, srcHeight, y); //initialize at position x = -1 Kernel_4x4 ker4 = {}; oobReader.readPonm(ker4, -4); //hack: read a, d, g, j at x = -1 ker4.a = ker4.p; ker4.d = ker4.o; ker4.g = ker4.n; ker4.j = ker4.m; oobReader.readPonm(ker4, -3); ker4.b = ker4.p; ker4.e = ker4.o; ker4.h = ker4.n; ker4.k = ker4.m; oobReader.readPonm(ker4, -2); ker4.c = ker4.p; ker4.f = ker4.o; ker4.i = ker4.n; ker4.l = ker4.m; oobReader.readPonm(ker4, -1); unsigned char blend_xy1 = 0; //corner blending for current (x, y + 1) position { const BlendResult res = preProcessCorners(ker4, cfg); clearAddTopL(blend_xy1, res.blend_i); //set 1st known corner for (0, y + 1) and buffer for use on next column addBottomL(preProcBuf[0], res.blend_f); //set 3rd known corner for (0, y) } for (int x = 0; x < srcWidth; ++x, out += Scaler::scale) { ker4.a = ker4.b; //shift previous kernel to the left ker4.d = ker4.e; // ----------------- ker4.g = ker4.h; // | A | B | C | P | ker4.j = ker4.k; // |---|---|---|---| /**/ // | D | E | F | O | (x, y) is at position E ker4.b = ker4.c; // |---|---|---|---| ker4.e = ker4.f; // | G | H | I | N | ker4.h = ker4.i; // |---|---|---|---| ker4.k = ker4.l; // | J | K | L | M | /**/ // ----------------- ker4.c = ker4.p; ker4.f = ker4.o; ker4.i = ker4.n; ker4.l = ker4.m; oobReader.readPonm(ker4, x); //evaluate the four corners on bottom-right of current pixel unsigned char blend_xy = preProcBuf[x]; //for current (x, y) position { /* preprocessing blend result: --------- | E | F | evaluate corner between E, F, H, I |---+---| current input pixel is at position E | H | I | --------- */ const BlendResult res = preProcessCorners(ker4, cfg); addBottomR(blend_xy, res.blend_e); //all four corners of (x, y) have been determined at this point due to processing sequence! addTopR(blend_xy1, res.blend_h); //set 2nd known corner for (x, y + 1) preProcBuf[x] = blend_xy1; //store on current buffer position for use on next row [[likely]] if (x + 1 < srcWidth) { //blend_xy1 -> blend_x1y1 clearAddTopL(blend_xy1, res.blend_i); //set 1st known corner for (x + 1, y + 1) and buffer for use on next column addBottomL(preProcBuf[x + 1], res.blend_f); //set 3rd known corner for (x + 1, y) } } //fill block of size scale * scale with the given color fillBlock(out, trgWidth, ker4.e, Scaler::scale); //place *after* preprocessing step, to not overwrite the results while processing the last pixel! //blend all four corners of current pixel if (blendingNeeded(blend_xy)) { const Kernel_3x3& ker3 = ker4; //"The Things We Do for Perf" blendPixel(ker3, out, trgWidth, blend_xy, cfg); blendPixel(ker3, out, trgWidth, blend_xy, cfg); blendPixel(ker3, out, trgWidth, blend_xy, cfg); blendPixel(ker3, out, trgWidth, blend_xy, cfg); } } } } //------------------------------------------------------------------------------------ template struct Scaler2x : public ColorGradient { static const int scale = 2; template //bring template function into scope for GCC static void alphaGrad(uint32_t& pixBack, uint32_t pixFront) { ColorGradient::template alphaGrad(pixBack, pixFront); } template static void blendLineShallow(uint32_t col, OutputMatrix& out) { alphaGrad<1, 4>(out.template ref(), col); alphaGrad<3, 4>(out.template ref(), col); } template static void blendLineSteep(uint32_t col, OutputMatrix& out) { alphaGrad<1, 4>(out.template ref<0, scale - 1>(), col); alphaGrad<3, 4>(out.template ref<1, scale - 1>(), col); } template static void blendLineSteepAndShallow(uint32_t col, OutputMatrix& out) { alphaGrad<1, 4>(out.template ref<1, 0>(), col); alphaGrad<1, 4>(out.template ref<0, 1>(), col); alphaGrad<5, 6>(out.template ref<1, 1>(), col); //[!] fixes 7/8 used in xBR } template static void blendLineDiagonal(uint32_t col, OutputMatrix& out) { alphaGrad<1, 2>(out.template ref<1, 1>(), col); } template static void blendCorner(uint32_t col, OutputMatrix& out) { //model a round corner alphaGrad<21, 100>(out.template ref<1, 1>(), col); //exact: 1 - pi/4 = 0.2146018366 } }; template struct Scaler3x : public ColorGradient { static const int scale = 3; template //bring template function into scope for GCC static void alphaGrad(uint32_t& pixBack, uint32_t pixFront) { ColorGradient::template alphaGrad(pixBack, pixFront); } template static void blendLineShallow(uint32_t col, OutputMatrix& out) { alphaGrad<1, 4>(out.template ref(), col); alphaGrad<1, 4>(out.template ref(), col); alphaGrad<3, 4>(out.template ref(), col); out.template ref() = col; } template static void blendLineSteep(uint32_t col, OutputMatrix& out) { alphaGrad<1, 4>(out.template ref<0, scale - 1>(), col); alphaGrad<1, 4>(out.template ref<2, scale - 2>(), col); alphaGrad<3, 4>(out.template ref<1, scale - 1>(), col); out.template ref<2, scale - 1>() = col; } template static void blendLineSteepAndShallow(uint32_t col, OutputMatrix& out) { alphaGrad<1, 4>(out.template ref<2, 0>(), col); alphaGrad<1, 4>(out.template ref<0, 2>(), col); alphaGrad<3, 4>(out.template ref<2, 1>(), col); alphaGrad<3, 4>(out.template ref<1, 2>(), col); out.template ref<2, 2>() = col; } template static void blendLineDiagonal(uint32_t col, OutputMatrix& out) { alphaGrad<1, 8>(out.template ref<1, 2>(), col); //conflict with other rotations for this odd scale alphaGrad<1, 8>(out.template ref<2, 1>(), col); alphaGrad<7, 8>(out.template ref<2, 2>(), col); // } template static void blendCorner(uint32_t col, OutputMatrix& out) { //model a round corner alphaGrad<45, 100>(out.template ref<2, 2>(), col); //exact: 0.4545939598 //alphaGrad<3, 100>(out.template ref<2, 1>(), col); //0.02826017254 -> negligible + avoid overlap with other rotations at this scale //alphaGrad<3, 100>(out.template ref<1, 2>(), col); //0.02826017254 } }; template struct Scaler4x : public ColorGradient { static const int scale = 4; template //bring template function into scope for GCC static void alphaGrad(uint32_t& pixBack, uint32_t pixFront) { ColorGradient::template alphaGrad(pixBack, pixFront); } template static void blendLineShallow(uint32_t col, OutputMatrix& out) { alphaGrad<1, 4>(out.template ref(), col); alphaGrad<1, 4>(out.template ref(), col); alphaGrad<3, 4>(out.template ref(), col); alphaGrad<3, 4>(out.template ref(), col); out.template ref() = col; out.template ref() = col; } template static void blendLineSteep(uint32_t col, OutputMatrix& out) { alphaGrad<1, 4>(out.template ref<0, scale - 1>(), col); alphaGrad<1, 4>(out.template ref<2, scale - 2>(), col); alphaGrad<3, 4>(out.template ref<1, scale - 1>(), col); alphaGrad<3, 4>(out.template ref<3, scale - 2>(), col); out.template ref<2, scale - 1>() = col; out.template ref<3, scale - 1>() = col; } template static void blendLineSteepAndShallow(uint32_t col, OutputMatrix& out) { alphaGrad<3, 4>(out.template ref<3, 1>(), col); alphaGrad<3, 4>(out.template ref<1, 3>(), col); alphaGrad<1, 4>(out.template ref<3, 0>(), col); alphaGrad<1, 4>(out.template ref<0, 3>(), col); alphaGrad<1, 3>(out.template ref<2, 2>(), col); //[!] fixes 1/4 used in xBR out.template ref<3, 3>() = col; out.template ref<3, 2>() = col; out.template ref<2, 3>() = col; } template static void blendLineDiagonal(uint32_t col, OutputMatrix& out) { alphaGrad<1, 2>(out.template ref(), col); alphaGrad<1, 2>(out.template ref(), col); out.template ref() = col; } template static void blendCorner(uint32_t col, OutputMatrix& out) { //model a round corner alphaGrad<68, 100>(out.template ref<3, 3>(), col); //exact: 0.6848532563 alphaGrad< 9, 100>(out.template ref<3, 2>(), col); //0.08677704501 alphaGrad< 9, 100>(out.template ref<2, 3>(), col); //0.08677704501 } }; template struct Scaler5x : public ColorGradient { static const int scale = 5; template //bring template function into scope for GCC static void alphaGrad(uint32_t& pixBack, uint32_t pixFront) { ColorGradient::template alphaGrad(pixBack, pixFront); } template static void blendLineShallow(uint32_t col, OutputMatrix& out) { alphaGrad<1, 4>(out.template ref(), col); alphaGrad<1, 4>(out.template ref(), col); alphaGrad<1, 4>(out.template ref(), col); alphaGrad<3, 4>(out.template ref(), col); alphaGrad<3, 4>(out.template ref(), col); out.template ref() = col; out.template ref() = col; out.template ref() = col; out.template ref() = col; } template static void blendLineSteep(uint32_t col, OutputMatrix& out) { alphaGrad<1, 4>(out.template ref<0, scale - 1>(), col); alphaGrad<1, 4>(out.template ref<2, scale - 2>(), col); alphaGrad<1, 4>(out.template ref<4, scale - 3>(), col); alphaGrad<3, 4>(out.template ref<1, scale - 1>(), col); alphaGrad<3, 4>(out.template ref<3, scale - 2>(), col); out.template ref<2, scale - 1>() = col; out.template ref<3, scale - 1>() = col; out.template ref<4, scale - 1>() = col; out.template ref<4, scale - 2>() = col; } template static void blendLineSteepAndShallow(uint32_t col, OutputMatrix& out) { alphaGrad<1, 4>(out.template ref<0, scale - 1>(), col); alphaGrad<1, 4>(out.template ref<2, scale - 2>(), col); alphaGrad<3, 4>(out.template ref<1, scale - 1>(), col); alphaGrad<1, 4>(out.template ref(), col); alphaGrad<1, 4>(out.template ref(), col); alphaGrad<3, 4>(out.template ref(), col); alphaGrad<2, 3>(out.template ref<3, 3>(), col); out.template ref<2, scale - 1>() = col; out.template ref<3, scale - 1>() = col; out.template ref<4, scale - 1>() = col; out.template ref() = col; out.template ref() = col; } template static void blendLineDiagonal(uint32_t col, OutputMatrix& out) { alphaGrad<1, 8>(out.template ref(), col); //conflict with other rotations for this odd scale alphaGrad<1, 8>(out.template ref(), col); alphaGrad<1, 8>(out.template ref(), col); // alphaGrad<7, 8>(out.template ref<4, 3>(), col); alphaGrad<7, 8>(out.template ref<3, 4>(), col); out.template ref<4, 4>() = col; } template static void blendCorner(uint32_t col, OutputMatrix& out) { //model a round corner alphaGrad<86, 100>(out.template ref<4, 4>(), col); //exact: 0.8631434088 alphaGrad<23, 100>(out.template ref<4, 3>(), col); //0.2306749731 alphaGrad<23, 100>(out.template ref<3, 4>(), col); //0.2306749731 //alphaGrad<2, 100>(out.template ref<4, 2>(), col); //0.01676812367 -> negligible + avoid overlap with other rotations at this scale //alphaGrad<2, 100>(out.template ref<2, 4>(), col); //0.01676812367 } }; template struct Scaler6x : public ColorGradient { static const int scale = 6; template //bring template function into scope for GCC static void alphaGrad(uint32_t& pixBack, uint32_t pixFront) { ColorGradient::template alphaGrad(pixBack, pixFront); } template static void blendLineShallow(uint32_t col, OutputMatrix& out) { alphaGrad<1, 4>(out.template ref(), col); alphaGrad<1, 4>(out.template ref(), col); alphaGrad<1, 4>(out.template ref(), col); alphaGrad<3, 4>(out.template ref(), col); alphaGrad<3, 4>(out.template ref(), col); alphaGrad<3, 4>(out.template ref(), col); out.template ref() = col; out.template ref() = col; out.template ref() = col; out.template ref() = col; out.template ref() = col; out.template ref() = col; } template static void blendLineSteep(uint32_t col, OutputMatrix& out) { alphaGrad<1, 4>(out.template ref<0, scale - 1>(), col); alphaGrad<1, 4>(out.template ref<2, scale - 2>(), col); alphaGrad<1, 4>(out.template ref<4, scale - 3>(), col); alphaGrad<3, 4>(out.template ref<1, scale - 1>(), col); alphaGrad<3, 4>(out.template ref<3, scale - 2>(), col); alphaGrad<3, 4>(out.template ref<5, scale - 3>(), col); out.template ref<2, scale - 1>() = col; out.template ref<3, scale - 1>() = col; out.template ref<4, scale - 1>() = col; out.template ref<5, scale - 1>() = col; out.template ref<4, scale - 2>() = col; out.template ref<5, scale - 2>() = col; } template static void blendLineSteepAndShallow(uint32_t col, OutputMatrix& out) { alphaGrad<1, 4>(out.template ref<0, scale - 1>(), col); alphaGrad<1, 4>(out.template ref<2, scale - 2>(), col); alphaGrad<3, 4>(out.template ref<1, scale - 1>(), col); alphaGrad<3, 4>(out.template ref<3, scale - 2>(), col); alphaGrad<1, 4>(out.template ref(), col); alphaGrad<1, 4>(out.template ref(), col); alphaGrad<3, 4>(out.template ref(), col); alphaGrad<3, 4>(out.template ref(), col); out.template ref<2, scale - 1>() = col; out.template ref<3, scale - 1>() = col; out.template ref<4, scale - 1>() = col; out.template ref<5, scale - 1>() = col; out.template ref<4, scale - 2>() = col; out.template ref<5, scale - 2>() = col; out.template ref() = col; out.template ref() = col; } template static void blendLineDiagonal(uint32_t col, OutputMatrix& out) { alphaGrad<1, 2>(out.template ref(), col); alphaGrad<1, 2>(out.template ref(), col); alphaGrad<1, 2>(out.template ref(), col); out.template ref() = col; out.template ref() = col; out.template ref() = col; } template static void blendCorner(uint32_t col, OutputMatrix& out) { //model a round corner alphaGrad<97, 100>(out.template ref<5, 5>(), col); //exact: 0.9711013910 alphaGrad<42, 100>(out.template ref<4, 5>(), col); //0.4236372243 alphaGrad<42, 100>(out.template ref<5, 4>(), col); //0.4236372243 alphaGrad< 6, 100>(out.template ref<5, 3>(), col); //0.05652034508 alphaGrad< 6, 100>(out.template ref<3, 5>(), col); //0.05652034508 } }; //------------------------------------------------------------------------------------ struct ColorDistanceRGB { static double dist(uint32_t pix1, uint32_t pix2, double testAttribute) { return distYCbCrBuffered(pix1, pix2, testAttribute); //if (pix1 == pix2) //about 4% perf boost // return 0; //return distYCbCr(pix1, pix2, luminanceWeight); } }; struct ColorDistanceARGB { static double dist(uint32_t pix1, uint32_t pix2, double testAttribute) { const double a1 = getAlpha(pix1) / 255.0 ; const double a2 = getAlpha(pix2) / 255.0 ; /* Requirements for a color distance handling alpha channel: with a1, a2 in [0, 1] 1. if a1 = a2, distance should be: a1 * distYCbCr() 2. if a1 = 0, distance should be: a2 * distYCbCr(black, white) = a2 * 255 3. if a1 = 1, ??? maybe: 255 * (1 - a2) + a2 * distYCbCr() std::min(a1, a2) * distYCbCrBuffered(pix1, pix2) + 255 * abs(a1 - a2); alternative? std::sqrt(a1 * a2 * square(distYCbCrBuffered(pix1, pix2)) + square(255 * (a1 - a2))); */ //=> following code is 15% faster: const double d = distYCbCrBuffered(pix1, pix2, testAttribute); if (a1 < a2) return a1 * d + 255 * (a2 - a1); else return a2 * d + 255 * (a1 - a2); } }; struct ColorDistanceUnbufferedARGB { static double dist(uint32_t pix1, uint32_t pix2, double testAttribute) { const double a1 = getAlpha(pix1) / 255.0 ; const double a2 = getAlpha(pix2) / 255.0 ; const double d = distYCbCr(pix1, pix2, testAttribute); if (a1 < a2) return a1 * d + 255 * (a2 - a1); else return a2 * d + 255 * (a1 - a2); } }; struct ColorGradientRGB { template static void alphaGrad(uint32_t& pixBack, uint32_t pixFront) { pixBack = gradientRGB(pixFront, pixBack); } }; struct ColorGradientARGB { template static void alphaGrad(uint32_t& pixBack, uint32_t pixFront) { pixBack = gradientARGB(pixFront, pixBack); } }; } void xbrz::scale(size_t factor, const uint32_t* src, uint32_t* trg, int srcWidth, int srcHeight, ColorFormat colFmt, const xbrz::ScalerCfg& cfg, int yFirst, int yLast) { if (factor == 1) { std::copy(src + yFirst * srcWidth, src + yLast * srcWidth, trg); return; } static_assert(SCALE_FACTOR_MAX == 6); switch (colFmt) { //*INDENT-OFF* case ColorFormat::rgb: switch (factor) { case 2: return scaleImage, ColorDistanceRGB, OobReaderDuplicate>(src, trg, srcWidth, srcHeight, cfg, yFirst, yLast); case 3: return scaleImage, ColorDistanceRGB, OobReaderDuplicate>(src, trg, srcWidth, srcHeight, cfg, yFirst, yLast); case 4: return scaleImage, ColorDistanceRGB, OobReaderDuplicate>(src, trg, srcWidth, srcHeight, cfg, yFirst, yLast); case 5: return scaleImage, ColorDistanceRGB, OobReaderDuplicate>(src, trg, srcWidth, srcHeight, cfg, yFirst, yLast); case 6: return scaleImage, ColorDistanceRGB, OobReaderDuplicate>(src, trg, srcWidth, srcHeight, cfg, yFirst, yLast); } break; case ColorFormat::argb: switch (factor) { case 2: return scaleImage, ColorDistanceARGB, OobReaderTransparent>(src, trg, srcWidth, srcHeight, cfg, yFirst, yLast); case 3: return scaleImage, ColorDistanceARGB, OobReaderTransparent>(src, trg, srcWidth, srcHeight, cfg, yFirst, yLast); case 4: return scaleImage, ColorDistanceARGB, OobReaderTransparent>(src, trg, srcWidth, srcHeight, cfg, yFirst, yLast); case 5: return scaleImage, ColorDistanceARGB, OobReaderTransparent>(src, trg, srcWidth, srcHeight, cfg, yFirst, yLast); case 6: return scaleImage, ColorDistanceARGB, OobReaderTransparent>(src, trg, srcWidth, srcHeight, cfg, yFirst, yLast); } break; case ColorFormat::argbUnbuffered: switch (factor) { case 2: return scaleImage, ColorDistanceUnbufferedARGB, OobReaderTransparent>(src, trg, srcWidth, srcHeight, cfg, yFirst, yLast); case 3: return scaleImage, ColorDistanceUnbufferedARGB, OobReaderTransparent>(src, trg, srcWidth, srcHeight, cfg, yFirst, yLast); case 4: return scaleImage, ColorDistanceUnbufferedARGB, OobReaderTransparent>(src, trg, srcWidth, srcHeight, cfg, yFirst, yLast); case 5: return scaleImage, ColorDistanceUnbufferedARGB, OobReaderTransparent>(src, trg, srcWidth, srcHeight, cfg, yFirst, yLast); case 6: return scaleImage, ColorDistanceUnbufferedARGB, OobReaderTransparent>(src, trg, srcWidth, srcHeight, cfg, yFirst, yLast); } break; //*INDENT-ON* } assert(false); } bool xbrz::equalColorTest2(uint32_t col1, uint32_t col2, ColorFormat colFmt, double equalColorTolerance, double testAttribute) { switch (colFmt) { case ColorFormat::rgb: return ColorDistanceRGB::dist(col1, col2, testAttribute) < equalColorTolerance; case ColorFormat::argb: return ColorDistanceARGB::dist(col1, col2, testAttribute) < equalColorTolerance; case ColorFormat::argbUnbuffered: return ColorDistanceUnbufferedARGB::dist(col1, col2, testAttribute) < equalColorTolerance; } assert(false); return false; } void xbrz::bilinearScale(const uint32_t* src, int srcWidth, int srcHeight, /**/ uint32_t* trg, int trgWidth, int trgHeight) { const auto pixReader = [src, srcWidth](int x, int y, BytePixel& pix) { static_assert(sizeof(pix) == sizeof(uint32_t)); const uint32_t pixSrc = src[y * srcWidth + x]; const unsigned char a = getAlpha(pixSrc); pix[0] = a; pix[1] = xbrz::premultiply(getRed (pixSrc), a); //r pix[2] = xbrz::premultiply(getGreen(pixSrc), a); //g pix[3] = xbrz::premultiply(getBlue (pixSrc), a); //b }; const auto pixWriter = [trg](const xbrz::BytePixel& pix) mutable { const unsigned char a = pix[0]; *trg++ = makePixel(a, xbrz::demultiply(pix[1], a), //r xbrz::demultiply(pix[2], a), //g xbrz::demultiply(pix[3], a)); //b }; bilinearScaleSimple(pixReader, srcWidth, srcHeight, pixWriter, trgWidth, trgHeight, 0, trgHeight); } void xbrz::nearestNeighborScale(const uint32_t* src, int srcWidth, int srcHeight, /**/ uint32_t* trg, int trgWidth, int trgHeight) { const auto imgReader = [src, srcWidth](int x, int y, BytePixel& pix) { static_assert(sizeof(pix) == sizeof(uint32_t)); std::memcpy(pix, src + y * srcWidth + x, sizeof(pix)); }; const auto imgWriter = [trg](const xbrz::BytePixel& pix) mutable { std::memcpy(trg++, pix, sizeof(pix)); }; nearestNeighborScale(imgReader, srcWidth, srcHeight, imgWriter, trgWidth, trgHeight, 0, trgHeight); } #if 0 //#include void bilinearScaleCpu(const uint32_t* src, int srcWidth, int srcHeight, /**/ uint32_t* trg, int trgWidth, int trgHeight) { const int TASK_GRANULARITY = 16; concurrency::task_group tg; for (int i = 0; i < trgHeight; i += TASK_GRANULARITY) tg.run([=] { const int iLast = std::min(i + TASK_GRANULARITY, trgHeight); xbrz::bilinearScaleSimple(src, srcWidth, srcHeight, srcWidth * sizeof(uint32_t), trg, trgWidth, trgHeight, trgWidth * sizeof(uint32_t), i, iLast, [](uint32_t pix) { return pix; }); }); tg.wait(); } //Perf: AMP vs CPU: merely ~10% shorter runtime (scaling 1280x800 -> 1920x1080) //#include void bilinearScaleAmp(const uint32_t* src, int srcWidth, int srcHeight, //throw concurrency::runtime_exception /**/ uint32_t* trg, int trgWidth, int trgHeight) { //C++ AMP reference: https://docs.microsoft.com/en-us/cpp/parallel/amp/reference/reference-cpp-amp //introduction to C++ AMP: https://docs.microsoft.com/en-us/archive/msdn-magazine/2012/april/c-a-code-based-introduction-to-c-amp using namespace concurrency; //TODO: pitch if (srcHeight <= 0 || srcWidth <= 0) return; const float scaleX = static_cast(trgWidth ) / srcWidth; const float scaleY = static_cast(trgHeight) / srcHeight; array_view srcView(srcHeight, srcWidth, src); array_view< uint32_t, 2> trgView(trgHeight, trgWidth, trg); trgView.discard_data(); parallel_for_each(trgView.extent, [=](index<2> idx) restrict(amp) //throw ? { const int y = idx[0]; const int x = idx[1]; //Perf notes: // -> float-based calculation is (almost) 2x as fas as double! // -> no noticeable improvement via tiling: https://docs.microsoft.com/en-us/archive/msdn-magazine/2012/april/c-amp-introduction-to-tiling-in-c-amp // -> no noticeable improvement with restrict(amp,cpu) // -> iterating over y-axis only is significantly slower! // -> pre-calculating x,y-dependent variables in a buffer + array_view<> is ~ 20 % slower! const int y1 = srcHeight * y / trgHeight; int y2 = y1 + 1; if (y2 == srcHeight) --y2; const float yy1 = y / scaleY - y1; const float y2y = 1 - yy1; //------------------------------------- const int x1 = srcWidth * x / trgWidth; int x2 = x1 + 1; if (x2 == srcWidth) --x2; const float xx1 = x / scaleX - x1; const float x2x = 1 - xx1; //------------------------------------- const float x2xy2y = x2x * y2y; const float xx1y2y = xx1 * y2y; const float x2xyy1 = x2x * yy1; const float xx1yy1 = xx1 * yy1; auto interpolate = [=](int offset) { /* https://en.wikipedia.org/wiki/Bilinear_interpolation (c11(x2 - x) + c21(x - x1)) * (y2 - y ) + (c12(x2 - x) + c22(x - x1)) * (y - y1) */ const auto c11 = (srcView(y1, x1) >> (8 * offset)) & 0xff; const auto c21 = (srcView(y1, x2) >> (8 * offset)) & 0xff; const auto c12 = (srcView(y2, x1) >> (8 * offset)) & 0xff; const auto c22 = (srcView(y2, x2) >> (8 * offset)) & 0xff; return c11 * x2xy2y + c21 * xx1y2y + c12 * x2xyy1 + c22 * xx1yy1; }; const float bi = interpolate(0); const float gi = interpolate(1); const float ri = interpolate(2); const float ai = interpolate(3); const auto b = static_cast(bi + 0.5f); const auto g = static_cast(gi + 0.5f); const auto r = static_cast(ri + 0.5f); const auto a = static_cast(ai + 0.5f); trgView(y, x) = (a << 24) | (r << 16) | (g << 8) | b; }); trgView.synchronize(); //throw ? } #endif