#include "statistics.h" #include #include "globalFunctions.h" #include "statusHandler.h" #include "../algorithm.h" #include #include RetrieveStatistics::RetrieveStatistics() : timer(new wxStopWatch) {} RetrieveStatistics::~RetrieveStatistics() { //write statistics to a file wxFFile outputFile(wxT("statistics.dat"), wxT("w")); outputFile.Write(wxT("Time(ms);Objects;Data\n")); for (std::vector::const_iterator i = data.begin(); i != data.end(); ++i) { outputFile.Write(globalFunctions::numberToWxString(int(i->time))); outputFile.Write(wxT(";")); outputFile.Write(globalFunctions::numberToWxString(i->objects)); outputFile.Write(wxT(";")); outputFile.Write(globalFunctions::numberToWxString(float(i->value))); outputFile.Write(wxT("\n")); } } void RetrieveStatistics::writeEntry(const double value, const int objects) { statEntry newEntry; newEntry.value = value; newEntry.objects = objects; newEntry.time = timer->Time(); data.push_back(newEntry); } //######################################################################################## inline bool isNull(const double number) { return globalFunctions::abs(number) <= std::numeric_limits::epsilon(); } inline wxString Statistics::formatRemainingTime(const double timeInMs) const { bool unitSec = true; double remainingTime = timeInMs / 1000; wxString unit = _(" sec"); if (remainingTime > 55) { unitSec = false; remainingTime /= 60; unit = _(" min"); if (remainingTime > 59) { remainingTime /= 60; unit = _(" hour(s)"); if (remainingTime > 23) { remainingTime /= 24; unit = _(" day(s)"); } } } int formattedTime = globalFunctions::round(remainingTime); //reduce precision to 5 seconds if (unitSec && formattedTime % 5 != 0) formattedTime += 5 - formattedTime % 5; //"ceiling" //avoid "jumping back and forth" when fluctuating around .5 if (remainingTimeLast < formattedTime) { if (unitSec) { formattedTime = globalFunctions::round(remainingTime); formattedTime -= formattedTime % 5; //"floor" } else formattedTime = int(remainingTime); //"floor" } remainingTimeLast = formattedTime; return globalFunctions::numberToWxString(formattedTime) + unit; //+ wxT("(") + globalFunctions::numberToWxString(globalFunctions::round(timeInMs / 1000)) + wxT(")"); } Statistics::Statistics(const int totalObjectCount, const double totalDataAmount, const unsigned windowSizeRemainingTime, const unsigned windowSizeBytesPerSecond) : objectsTotal(totalObjectCount), dataTotal(totalDataAmount), windowSizeRemTime(windowSizeRemainingTime), windowSizeBPS(windowSizeBytesPerSecond), windowMax(std::max(windowSizeRemainingTime, windowSizeBytesPerSecond)), remainingTimeLast(256*256*256*100), //something "big" timer(new wxStopWatch) {} void Statistics::addMeasurement(const int objectsCurrent, const double dataCurrent) { record newEntry; newEntry.objects = objectsCurrent; newEntry.data = dataCurrent; newEntry.time = timer->Time(); //insert new record measurements.push_back(newEntry); //remove all records earlier than "currentTime - windowSize" const long newBegin = newEntry.time - windowMax; while (measurements.size() > 0 && measurements.front().time < newBegin) measurements.pop_front(); } wxString Statistics::getRemainingTime() const { if (measurements.size() > 0) { //find start of records "window" const record backElement = measurements.back(); const long frontTime = backElement.time - windowSizeRemTime; std::list::const_iterator frontElement = measurements.end(); do { --frontElement; } while (frontElement != measurements.begin() && frontElement->time > frontTime); const double timeDelta = backElement.time - frontElement->time; const double dataDelta = backElement.data - frontElement->data; const double dataRemaining = dataTotal - backElement.data; if (!isNull(dataDelta)) return formatRemainingTime(dataRemaining * timeDelta / dataDelta); } return wxT("-"); //fallback } wxString Statistics::getBytesPerSecond() const { if (measurements.size() > 0) { //find start of records "window" const long frontTime = measurements.back().time - windowSizeBPS; std::list::const_iterator frontElement = measurements.end(); do { --frontElement; } while (frontElement != measurements.begin() && frontElement->time > frontTime); const double timeDelta = measurements.back().time - frontElement->time; const double dataDelta = measurements.back().data - frontElement->data; if (!isNull(timeDelta)) return FreeFileSync::formatFilesizeToShortString(dataDelta * 1000 / timeDelta) + _("/sec"); } return wxT("-"); //fallback } void Statistics::pauseTimer() { timer->Pause(); } void Statistics::resumeTimer() { timer->Resume(); } /* class for calculation of remaining time: ---------------------------------------- "filesize |-> time" is an affine linear function f(x) = z_1 + z_2 x For given n measurements, sizes x_0, ..., x_n and times f_0, ..., f_n, the function f (as a polynom of degree 1) can be lineary approximated by z_1 = (r - s * q / p) / ((n + 1) - s * s / p) z_2 = (q - s * z_1) / p = (r - (n + 1) z_1) / s with p := x_0^2 + ... + x_n^2 q := f_0 x_0 + ... + f_n x_n r := f_0 + ... + f_n s := x_0 + ... + x_n => the time to process N files with amount of data D is: N * z_1 + D * z_2 Problem: -------- Times f_0, ..., f_n can be very small so that precision of the PC clock is poor. => Times have to be accumulated to enhance precision: Copying of m files with sizes x_i and times f_i (i = 1, ..., m) takes sum_i f(x_i) := m * z_1 + z_2 * sum x_i = sum f_i With X defined as the accumulated sizes and F the accumulated times this gives: (in theory...) m * z_1 + z_2 * X = F <=> z_1 + z_2 * X / m = F / m => we obtain a new (artificial) measurement with size X / m and time F / m to be used in the linear approximation above Statistics::Statistics(const int totalObjectCount, const double totalDataAmount, const unsigned recordCount) : objectsTotal(totalObjectCount), dataTotal(totalDataAmount), recordsMax(recordCount), objectsLast(0), dataLast(0), timeLast(wxGetLocalTimeMillis()), z1_current(0), z2_current(0), dummyRecordPresent(false) {} wxString Statistics::getRemainingTime(const int objectsCurrent, const double dataCurrent) { //add new measurement point const int m = objectsCurrent - objectsLast; if (m != 0) { objectsLast = objectsCurrent; const double X = dataCurrent - dataLast; dataLast = dataCurrent; const wxLongLong timeCurrent = wxGetLocalTimeMillis(); const double F = (timeCurrent - timeLast).ToDouble(); timeLast = timeCurrent; record newEntry; newEntry.x_i = X / m; newEntry.f_i = F / m; //remove dummy record if (dummyRecordPresent) { measurements.pop_back(); dummyRecordPresent = false; } //insert new record measurements.push_back(newEntry); if (measurements.size() > recordsMax) measurements.pop_front(); } else //dataCurrent increased without processing new objects: { //modify last measurement until m != 0 const double X = dataCurrent - dataLast; //do not set dataLast, timeLast variables here, but write dummy record instead if (!isNull(X)) { const wxLongLong timeCurrent = wxGetLocalTimeMillis(); const double F = (timeCurrent - timeLast).ToDouble(); record modifyEntry; modifyEntry.x_i = X; modifyEntry.f_i = F; //insert dummy record if (!dummyRecordPresent) { measurements.push_back(modifyEntry); if (measurements.size() > recordsMax) measurements.pop_front(); dummyRecordPresent = true; } else //modify dummy record measurements.back() = modifyEntry; } } //calculate remaining time based on stored measurement points double p = 0; double q = 0; double r = 0; double s = 0; for (std::list::const_iterator i = measurements.begin(); i != measurements.end(); ++i) { const double x_i = i->x_i; const double f_i = i->f_i; p += x_i * x_i; q += f_i * x_i; r += f_i; s += x_i; } if (!isNull(p)) { const double n = measurements.size(); const double tmp = (n - s * s / p); if (!isNull(tmp) && !isNull(s)) { const double z1 = (r - s * q / p) / tmp; const double z2 = (r - n * z1) / s; //not (n + 1) here, since n already is the number of measurements //refresh current values for z1, z2 z1_current = z1; z2_current = z2; } } return formatRemainingTime((objectsTotal - objectsCurrent) * z1_current + (dataTotal - dataCurrent) * z2_current); } */